I'm having trouble explaining why my performance test return significantly different results on 2 different types of run.
Steps to reproduce issue:
node practice1.generator
node practice1.performance-test
practice1.generator
should generate a test-data.json
file, and log some searching algorithm execution time into the console.
After that, practice1.performance-test
reads from test-data.json
, and perform the exact same evaluation function on that same data.
The output on my machine is consistently similar to this:
> node practice1.generator
Generate time: 9,307,061,368 nanoseconds
Total time using indexOf : 7,005,750 nanoseconds
Total time using for loop : 7,463,967 nanoseconds
Total time using binary search : 1,741,822 nanoseconds
Total time using interpolation search: 915,532 nanoseconds
> node practice1.performance-test
Total time using indexOf : 11,574,993 nanoseconds
Total time using for loop : 8,765,902 nanoseconds
Total time using binary search : 2,365,598 nanoseconds
Total time using interpolation search: 771,005 nanoseconds
Note the difference in execution time in the case of indexOf
and binary search
comparing to the other algorithms.
If I repeatedly run node practice1.generator
or node practice1.performance-test
, the result is quite consistent though.
Now this is so troubling, I can't find a way to figure out which result is credible, and why such differences occur. Is it caused by a difference between the generated test array vs JSON.parse-d test array; or is it caused by process.hrtime()
; or is it some unknown reason I couldn't even fathom?
Update: I have traced the cause of the indexOf
case to be because of JSON.parse
. Inside practice1.generator
, the tests
array is the original generated array; while in practice1.performance-test
the array is read from the json file and is probably different from the original array somehow.
If within practice1.generator
I instead JSON.parse()
a new array from the string:
var tests2 = JSON.parse(JSON.stringify(tests));
performanceUtil.performanceTest(tests2);
The execution time of indexOf
is now consistent on both files.
> node practice1.generator
Generate time: 9,026,080,466 nanoseconds
Total time using indexOf : 11,016,420 nanoseconds
Total time using for loop : 8,534,540 nanoseconds
Total time using binary search : 1,586,780 nanoseconds
Total time using interpolation search: 742,460 nanoseconds
> node practice1.performance-test
Total time using indexOf : 11,423,556 nanoseconds
Total time using for loop : 8,509,602 nanoseconds
Total time using binary search : 2,303,099 nanoseconds
Total time using interpolation search: 718,723 nanoseconds
So at least I know indexOf
run better on the original array and worse on a JSON.parse
-d array. Still I only know the reason, no clue why.
The Binary search execution time remain different on 2 files, consistently taking ~1.7ms in practice1.generator
(even when using a JSON.parse
-d object) and ~2.3ms in practice1.performance-test
.
Below is the same code as in the gist, provided for future reference purpose.
performance-utils.js:
'use strict';
const performanceTest = function(tests){
var tindexOf = process.hrtime();
tests.forEach(testcase => {
var result = testcase.input.indexOf(testcase.target);
if(result !== testcase.output) console.log("Errr", result, testcase.output);
});
tindexOf = process.hrtime(tindexOf);
var tmanual = process.hrtime();
tests.forEach(testcase => {
const arrLen = testcase.input.length;
var result = -1;
for(var i=0;i<arrLen;i++){
if(testcase.input[i] === testcase.target){
result = i;
break;
}
}
if(result !== testcase.output) console.log("Errr", result, testcase.output);
});
tmanual = process.hrtime(tmanual);
var tbinary = process.hrtime();
tests.forEach(testcase => {
var max = testcase.input.length-1;
var min = 0;
var check, num;
var result = -1;
while(max => min){
check = Math.floor((max+min)/2);
num = testcase.input[check];
if(num === testcase.target){
result = check;
break;
}
else if(num > testcase.target) max = check-1;
else min = check+1;
}
if(result !== testcase.output) console.log("Errr", result, testcase.output);
});
tbinary = process.hrtime(tbinary);
var tinterpolation = process.hrtime();
tests.forEach(testcase => {
var max = testcase.input.length-1;
var min = 0;
var result = -1;
var check, num;
while(max > min && testcase.target >= testcase.input[min] && testcase.target <= testcase.input[max]){
check = min + Math.round((max-min) * (testcase.target - testcase.input[min]) / (testcase.input[max]-testcase.input[min]));
num = testcase.input[check];
if(num === testcase.target){
result = check;
break;
}
else if(testcase.target > num) min = check + 1;
else max = check - 1;
}
if(result === -1 && testcase.input[max] == testcase.target) result = max;
if(result !== testcase.output) console.log("Errr", result, testcase.output);
});
tinterpolation = process.hrtime(tinterpolation);
console.log(`Total time using indexOf : ${(tindexOf[0] * 1e9 + tindexOf[1]).toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",")} nanoseconds`);
console.log(`Total time using for loop : ${(tmanual[0] * 1e9 + tmanual[1]).toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",")} nanoseconds`);
console.log(`Total time using binary search : ${(tbinary[0] * 1e9 + tbinary[1]).toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",")} nanoseconds`);
console.log(`Total time using interpolation search: ${(tinterpolation[0] * 1e9 + tinterpolation[1]).toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",")} nanoseconds`);
}
module.exports = { performanceTest }
practice1.generator.js:
'use strict';
require('util');
const performanceUtil = require('./performance-utils');
const fs = require('fs');
const path = require('path');
const outputFilePath = path.join(__dirname, process.argv[3] || 'test-data.json');
const AMOUNT_TO_GENERATE = parseInt(process.argv[2] || 1000);
// Make sure ARRAY_LENGTH_MAX < (MAX_NUMBER - MIN_NUMBER)
const ARRAY_LENGTH_MIN = 10000;
const ARRAY_LENGTH_MAX = 18000;
const MIN_NUMBER = -10000;
const MAX_NUMBER = 10000;
const candidates = Array.from(Array(MAX_NUMBER - MIN_NUMBER + 1), (item, index) => MIN_NUMBER + index);
function createNewTestcase(){
var input = candidates.slice();
const lengthToGenerate = Math.floor(Math.random()*(ARRAY_LENGTH_MAX - ARRAY_LENGTH_MIN + 1)) + ARRAY_LENGTH_MIN;
while(input.length > lengthToGenerate){
input.splice(Math.floor(Math.random()*input.length), 1);
}
const notfound = input.length === lengthToGenerate ?
input.splice(Math.floor(Math.random()*input.length), 1)[0] : MIN_NUMBER-1;
const output = Math.floor(Math.random()*(input.length+1)) - 1;
const target = output === -1 ? notfound : input[output];
return {
input,
target,
output
};
}
var tgen = process.hrtime();
var tests = [];
while(tests.length < AMOUNT_TO_GENERATE){
tests.push(createNewTestcase());
}
fs.writeFileSync(outputFilePath, JSON.stringify(tests));
var tgen = process.hrtime(tgen);
console.log(`Generate time: ${(tgen[0] * 1e9 + tgen[1]).toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",")} nanoseconds`);
performanceUtil.performanceTest(tests);
practice1.performance-test.js:
'use strict';
require('util');
const performanceUtil = require('./performance-utils');
const fs = require('fs');
const path = require('path');
const outputFilePath = path.join(__dirname, process.argv[2] || 'test-data.json');
var tests = JSON.parse(fs.readFileSync(outputFilePath));
performanceUtil.performanceTest(tests);
As you have already noticed, the performance difference leads to the comparison: generated array
vs JSON.parse
d. What we have in both cases: same arrays with same numbers? So the look up performance must be the same? No.
Every Javascript engine has various data type structures for representing same values(numbers, objects, arrays, etc). In most cases optimizer tries to find out the best data type to use. And also often generates some additional meta information, like
hidden clases
ortags
for arrays.
There are several very nice articles about the data types:
So why arrays created by JSON.parse
are slow? The parser, when creating values, doesn't properly optimize the data structures, and as the result we get untagged
arrays with boxed
doubles. But we can optimize the arrays afterwards with Array.from
and in your case, same as the generated arrays, you get smi
arrays with smi
numbers. Here is an example based on your sample.
const fs = require('fs');
const path = require('path');
const outputFilePath = path.join(__dirname, process.argv[2] || 'test-data.json');
let tests = JSON.parse(fs.readFileSync(outputFilePath));
// for this demo we take only the first items array
var arrSlow = tests[0].input;
// `slice` copies array as-is
var arrSlow2 = tests[0].input.slice();
// array is copied and optimized
var arrFast = Array.from(tests[0].input);
console.log(%HasFastSmiElements(arrFast), %HasFastSmiElements(arrSlow), %HasFastSmiElements(arrSlow2));
//> true, false, false
console.log(%HasFastObjectElements(arrFast), %HasFastObjectElements(arrSlow), %HasFastObjectElements(arrSlow2));
//> false, true, true
console.log(%HasFastDoubleElements(arrFast), %HasFastDoubleElements(arrSlow), %HasFastDoubleElements(arrSlow2));
//> false, false, false
// small numbers and unboxed doubles in action
console.log(%HasFastDoubleElements([Math.pow(2, 31)]));
console.log(%HasFastSmiElements([Math.pow(2, 30)]));
Run it with node --allow-natives-syntax test.js
OK...first of all lets talk about testing strategy...
Running this tests several times gives incredible different results fluctuating a lot for each point... see results here
https://docs.google.com/spreadsheets/d/1Z95GtT85BljpNda4l-usPjNTA5lJtUmmcY7BVB8fFGQ/edit?usp=sharing
After test update (running 100 tests in a row and calculating average) I score that the main difference in execution times are:
Please look at the google doc before...
OK.. Great... This thing is much more easier to explain... basicly we trapped into situation when RANDOM memory access(binary, interpolation search) and CONSECUTIVE memory access(indexOf, for) give different results
Hmmm. Lets go deeper inside the memory management model of NodeJS
First of all NodeJS has several array representations, I actually know only two - numberArray
, objectArray
(means array that can include value of any type)
Lets look at GENERATOR scenario:
During initial array creation NodeJS is ABLE to detect that your array contains only numbers, as array starting from only numbers, and nothing of other type is added to it. This results in using simple memory allocation strategy, just raw row of integers going one by one in memory...
Array is represented as array of raw numbers
in memory, most likely only memory paging table has an effect here
This fact clearly explains why CONSECUTIVE memory access works better in this case.
Lets look at JSON-parse scenario:
During the JSON parsing structure of JSON is unpredictable(NodeJS uses a stream JSON parser(99.99% confidence)), every value is tracted as most cozy for JSON parsing, so...
Array is represented as array of references to the numbers
in memory, just because while parsing JSON this solution is more productive in most cases (and nobody cares (devil) )
As far as we allocating memory in heap by small chunks memory gets filled in more fluid way
Also in this model RANDOM memory access gives better results, because NodeJS engine has no options - to optimize access time it creates good either prefix tree either hash map which gives constant access time in RANDOM memory access scenarios
And this is quite good explanation why JSON-parse scenario wins during binary, interpolation search
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With