This question talks of an optimization of the sort function that cannot be readily achieved in C: Performance of qsort vs std::sort?
Are there more examples of compiler optimizations which would be impossible or at least difficult to achieve in C when compared to C++?
In any case optimization is done by compiler, which is language-dependant, not by the assembler. No because one instruction in assembly corresponds to one instruction in machine code.
Typical interprocedural optimizations are: procedure inlining, interprocedural dead-code elimination, interprocedural constant propagation, and procedure reordering. As usual, the compiler needs to perform interprocedural analysis before its actual optimizations.
Optimization is a program transformation technique, which tries to improve the code by making it consume less resources (i.e. CPU, Memory) and deliver high speed. In optimization, high-level general programming constructs are replaced by very efficient low-level programming codes.
As @sehe mentioned in a comment. It's about the abstractions more than anything else. In other words, if the language allows the coder to express intent better, then it can emit code which implements that intent in a more optimal fashion.
A simple example is std::fill
. Sure for basic types, you could use memset
, but, let's say it's an array of 32-bit unsigned long
s. std::fill
knows that the array size is a multiple of 32-bits. And depending on the compiler, it might even be able to make the assumption that the array is properly aligned on a 32-bit boundary as well.
All of this combined may allow the compiler to emit code which sets the value 32-bit at a time, with no run-time checks to make sure that it is valid to do so. If we are lucky, the compiler will recognize this and replace it with a particularly efficient architecture specific version of the code.
(in reality gcc and probably the other mainstream compilers do in fact do this for just about anything that could be considered equivalent to a memset
already, including std::fill
).
often, memset
is implemented in a way that has run-time checks for these types of things in order to choose the optimal code path. While this difference is probably negligible, the idea is that we have better expressed the intent of "filling" an array with a specific value, so the compiler is able to make slightly better choices.
Other more complicated language features do a good job of using the expression of intent to get larger gains, but this is the simplest example.
To be clear, my point is not that std::fill
is "better" than memset
, instead this is an example of how c++ allows better expression of intent to the compiler, allowing it to have more information during compile time, resulting in some optimizations being easier to implement.
It depends a bit on what you think of as the optimization here. If you're thinking of it purely as "std::sort vs. qsort", then there are thousands of other similar optimizations. Using a C++ template can supports inlining in situations where essentially the only reasonable alternative in C is to use a pointer to a function and nearly no known compiler will inline the code being called. Depending on your viewpoint, this is either a single optimization, or an entire (open-ended) family of them.
Another possibility is using template meta-programming to turn something into a compile-time constant that would normally have to be computed at run-time with C. In theory, you could usually do this by embedding a magic number. This is possible via a #define
into C, but can lose context, flexibility or both (e.g., in C++ you can define a constant at compile time, carry out an arbitrary calculation from that input, and produce a compile-time constant used by the rest of the code. Given the much more limited calculations you can carry out in a #define
, that's not possible nearly as often.
Yet another possibility is function overloading and template specialization. These are separate, but give the same basic result: using code that's specialized to a particular type. In C, to keep the number of functions you deal with halfway reasonable, you frequently end up writing code that (for example) converts all integers to a long
, then does math on that. Templates, template specialization, and overloading make it relatively easy to use code that keeps the smaller types their native sizes, which can give a substantial speed increase (especially when it can enable vectorizing the math).
One last obvious possibility stems from simply providing quite a few pre-built data structures and algorithms, and allowing such things to be packaged for relatively easy, efficient re-use. I doubt I could even count the number of times I wrote code in C using what I knew were relatively inefficient data structures and/or algorithms, simply because it wasn't worth the time to find (or adapt) a more efficient one to the task at hand. Yes, if it really became a major bottleneck, I'd go to the trouble of finding or writing something better -- but doing a bit of comparing, it's still fairly common to see speed double when written in C++.
I should add, however, that all of these are undoubtedly possible with C, at least in theory. If you approach this from a viewpoint of something like language complexity theory and theoretical models of computation (e.g., Turing machines) there's no question that C and C++ are equivalent. With enough work writing specialized versions of each function, you can/could theoretically do all of those same things with C as you can with C++.
From a viewpoint of what code you can plan on really writing in a practical project, the story changes very quickly -- the limit on what you can do mostly comes down to what you can reasonably manage, not anything like the theoretical model of computation represented by the language. Levels of optimization that are almost entirely theoretical in C are not only practical, but quite routine in C++.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With