I would like to use cross validation to test/train my dataset and evaluate the performance of the logistic regression model on the entire dataset and not only on the test set (e.g. 25%).
These concepts are totally new to me and am not very sure if am doing it right. I would be grateful if anyone could advise me on the right steps to take where I have gone wrong. Part of my code is shown below.
Also, how can I plot ROCs for "y2" and "y3" on the same graph with the current one?
Thank you
import pandas as pd
Data=pd.read_csv ('C:\\Dataset.csv',index_col='SNo')
feature_cols=['A','B','C','D','E']
X=Data[feature_cols]
Y=Data['Status']
Y1=Data['Status1'] # predictions from elsewhere
Y2=Data['Status2'] # predictions from elsewhere
from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
logreg.fit(X_train,y_train)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn import metrics, cross_validation
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
metrics.accuracy_score(y, predicted)
from sklearn.cross_validation import cross_val_score
accuracy = cross_val_score(logreg, X, y, cv=10,scoring='accuracy')
print (accuracy)
print (cross_val_score(logreg, X, y, cv=10,scoring='accuracy').mean())
from nltk import ConfusionMatrix
print (ConfusionMatrix(list(y), list(predicted)))
#print (ConfusionMatrix(list(y), list(yexpert)))
# sensitivity:
print (metrics.recall_score(y, predicted) )
import matplotlib.pyplot as plt
probs = logreg.predict_proba(X)[:, 1]
plt.hist(probs)
plt.show()
# use 0.5 cutoff for predicting 'default'
import numpy as np
preds = np.where(probs > 0.5, 1, 0)
print (ConfusionMatrix(list(y), list(preds)))
# check accuracy, sensitivity, specificity
print (metrics.accuracy_score(y, predicted))
#ROC CURVES and AUC
# plot ROC curve
fpr, tpr, thresholds = metrics.roc_curve(y, probs)
plt.plot(fpr, tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate)')
plt.show()
# calculate AUC
print (metrics.roc_auc_score(y, probs))
# use AUC as evaluation metric for cross-validation
from sklearn.cross_validation import cross_val_score
logreg = LogisticRegression()
cross_val_score(logreg, X, y, cv=10, scoring='roc_auc').mean()
1.1 Cross validation for logistic regression We can use the same cost function as defined before, but you need to modify it such that there are only two input: observed Y and predicted probability, so that the cv. glm can recognize it for cross-validation with asymmetric cost.
By using cross-validation, we can make predictions on our dataset in the same way as described before and so our second's models input will be real predictions on data that our first model never seen before.
You got it almost right. cross_validation.cross_val_predict
gives you predictions for the entire dataset. You just need to remove logreg.fit
earlier in the code. Specifically, what it does is the following:
It divides your dataset in to n
folds and in each iteration it leaves one of the folds out as the test set and trains the model on the rest of the folds (n-1
folds). So, in the end you will get predictions for the entire data.
Let's illustrate this with one of the built-in datasets in sklearn, iris. This dataset contains 150 training samples with 4 features. iris['data']
is X
and iris['target']
is y
In [15]: iris['data'].shape
Out[15]: (150, 4)
To get predictions on the entire set with cross validation you can do the following:
from sklearn.linear_model import LogisticRegression
from sklearn import metrics, cross_validation
from sklearn import datasets
iris = datasets.load_iris()
predicted = cross_validation.cross_val_predict(LogisticRegression(), iris['data'], iris['target'], cv=10)
print metrics.accuracy_score(iris['target'], predicted)
Out [1] : 0.9537
print metrics.classification_report(iris['target'], predicted)
Out [2] :
precision recall f1-score support
0 1.00 1.00 1.00 50
1 0.96 0.90 0.93 50
2 0.91 0.96 0.93 50
avg / total 0.95 0.95 0.95 150
So, back to your code. All you need is this:
from sklearn import metrics, cross_validation
logreg=LogisticRegression()
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
print metrics.accuracy_score(y, predicted)
print metrics.classification_report(y, predicted)
For plotting ROC in multi-class classification, you can follow this tutorial which gives you something like the following:
In general, sklearn has very good tutorials and documentation. I strongly recommend reading their tutorial on cross_validation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With