Given a number find the 5 digits before the trailing 0. 9! = 362880 so f(9)=36288 10! = 3628800 so f(10)=36288 20! = 2432902008176640000 so f(20)=17664 Find f(1,000,000,000,000)
For this I have computed the f(10^6)
and then f(10^12) =
(f(10^6))^(10^6)
for computing the f(n)
... I am computing the
factorial by removing any 5 and corresponding 2 so that all the
trailing zeros are removed.
But I am getting a wrong answer.
Is there a problem in approach or some silly mistake ?
Code for reference
long long po(long long n, long long m, long long mod) {
if (m == 0) return 1;
if (m == 1) return n % mod;
long long r = po(n, m / 2, mod) % mod;
if (m % 2 == 0) return (r * r) % mod;
return (((r * r) % mod) * n) % mod;
}
void foo() {
unsigned long long i, res = 1, m = 1000000 , c = 0, j, res1 = 1, mod;
mod = ceil(pow(10, 9));
cout << mod << endl;
long long a = 0, a2 = 0, a5 = 0;
for (i = 1 ; i <= m; i++) {
j = i;
while (j % 10 == 0)
j /= 10;
while (j % 2 == 0) {
j /= 2;
a2++;
}
while (j % 5 == 0) {
j /= 5;
a5++;
}
res = (res * j ) % mod;
}
a = a2 - a5;
for (i = 1; i <= a; i++)
res = (res * 2) % mod;
for (i = 1; i <= 1000000; i++) {
res1 = (res1 * res) % mod;
}
cout << res1 << endl;
}
Your equality f(10^12) = (f(10^6))^(10^6)
is wrong. f() is based on factorials, not powers.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With