Is there a way to have effect size (such as Cohen's d or the most appropriate) directly using emmeans()?
I cannot find anything for obtaining effect size by using emmeans()
post <- emmeans(fit, pairwise~ favorite.pirate | sex)
emmip(fit, ~ favorite.pirate | sex)
There is not a built-in provision for effect-size calculations, but you can cobble one together by defining a custom contrast function that divides each pairwise comparison by a value of sigma:
mypw.emmc = function(..., sigma = 1) {
result = emmeans:::pairwise.emmc (...)
for (i in seq_along(result[1, ]))
result[[i]] = result[[i]] / sigma
result
}
Here's a test run:
> mypw.emmc(1:3, sigma = 4)
1 - 2 1 - 3 2 - 3
1 0.25 0.25 0.00
2 -0.25 0.00 0.25
3 0.00 -0.25 -0.25
With your model, the error SD is 9.246 (look at summary(fit)
; so, ...
> emmeans(fit, mypw ~ sex, sigma = 9.246, name = "effect.size")
NOTE: Results may be misleading due to involvement in interactions
$emmeans
sex emmean SE df lower.CL upper.CL
female 63.8 0.434 3.03 62.4 65.2
male 74.5 0.809 15.82 72.8 76.2
other 68.8 1.439 187.08 65.9 71.6
Results are averaged over the levels of: favorite.pirate
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$contrasts
effect.size estimate SE df t.ratio p.value
female - male -1.158 0.0996 399 -11.624 <.0001
female - other -0.537 0.1627 888 -3.299 0.0029
male - other 0.621 0.1717 981 3.617 0.0009
Results are averaged over the levels of: favorite.pirate
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 3 estimates
Some words of caution though:
sigma
.This is not a very good example because
a. The factors interact (Edward Low is different in his profile). Also, see the warning message.
b. The model is singular (as warned when the model was fitted), yielding an estimated variance of zero for college
)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With