Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Error with the dimension of 1DConv input when using tf.data and mode.fit

I am using TensorFlow 2.0.0 and trying to create my own data set with tf.data.Dataset.from_generator()

Here are my codes:

def trainDatagen():
    for npy in train_list:
        x = tf.convert_to_tensor(np.load(npy), dtype=tf.float32)
        if npy in gbmlist:
             y = to_categorical(0, num_classes=2)
        else:
             y = to_categorical(1, num_classes=2)
        yield x, y

def tfDatasetGen(datagen, output_types, is_training, batch_size):
    dataset = tf.data.Dataset.from_generator(generator=datagen, output_types=output_types)
    if is_training:
        dataset.shuffle(buffer_size=100)
    dataset.repeat()
    dataset.batch(batch_size=batch_size)
    dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
    return dataset

train_set = tfDatasetGen(
    datagen = trainDatagen, 
    output_types = (tf.float32, tf.float32), 
    is_training = True, 
    batch_size = 16)

All those npy files are np.array with shape of [4000,2048] got from large pathology slides with 4000 tiles. Feature of each tile was calculated by ResNet50.

Here is my model:

def top_k(inputs, k):
    return tf.nn.top_k(inputs, k=k, sorted=True).values

def least_k(inputs, k):
    return -tf.nn.top_k(-inputs, k=k, sorted=True).values

def minmax_k(inputs, k):
    return tf.concat([top_k(inputs, k), least_k(inputs, k)], axis = -1)

inputs = keras.Input(shape=(4000,2048))
y = layers.Conv1D(1, 2048, use_bias=False, padding='same', data_format='channels_last')(inputs)
y = layers.Flatten()(y)
y = layers.Lambda(minmax_k, arguments={'k': 5})(y)
y = layers.Dense(units=200, activation=tf.nn.relu)(y)
y = layers.Dropout(rate=0.5)(y)
y = layers.Dense(units=100, activation=tf.nn.relu)(y)
y = layers.Dense(units=2, activation=tf.nn.softmax)(y)
model = keras.Model(inputs=inputs, outputs=y)

When using model.fit() to train the model, I received this:

ValueError: Error when checking input: expected input_4 to have 3 dimensions, but got array with shape (4000, 2048)

All this idea is from the paper arXiv:1802.02212. Here is the figure of the neural network I tried to reproduce.

description of CHOWDER architecture


I followed Mahsa Hassankashi's advice to reshape the input to (4000,2048,1)

x = tf.convert_to_tensor(np.load(npy).reshape(4000,2048,1), dtype=tf.float32)

and modified this part to fix an error according to GitHub issues:

train_set = tfDatasetGen(
    datagen = trainDatagen, 
    output_types = (tf.float32, tf.float32), 
    **output_shapes = (tf.TensorShape((None,None,None)), tf.TensorShape((2,))),**
    is_training = True, 
    batch_size = 16)

But I got this:

InvalidArgumentError:  input and filter must have the same depth: 1 vs 2048

Finally I tried to reshape the input to (1,4000,2048), this time another kind of error came to me:

InvalidArgumentError:  Expected size[0] in [0, 1], but got 2
like image 416
Satantango Avatar asked Nov 07 '22 07:11

Satantango


1 Answers

Please look at train list and if it needs 2 dimensional for Convolution NN, use:

convolution2d

difference between 1D, 2D, and 3D convolutions in convolutional neural networks (in deep learning)

CNN Dimensional

Otherwise for last bug:

InvalidArgumentError:  Expected size[0] in [0, 1], but got 2

When the generated element is a Tensor, from_generator function would flatten it to output_types. And this conversion will not work.

The solution is, use from_tensors or from_tensor_slices instead of from_generator when the generator generates a tensor.

Please test below solutions:

Could you please test it:

1.tensorflow gpu

conda create --name tensorflow
activate tensorflow
pip install tensorflow
pip install tensorflow-gpu

2.Timesteps According to this your convolution1d needs 3 dimensions and convolution2d needs 4. enter image description here

input_shape = (timesteps, input_dim)

timesteps=1

Then reshape the X_train and X_test as:

X1_Train = X1_Train.reshape((4000,2048,1))
#call model.fit()

3.Use

model.fit_generator()

4.Add flatten before the last dense.

model.add(Flatten())

keras convolution_layers

like image 139
Mahsa Hassankashi Avatar answered Nov 14 '22 22:11

Mahsa Hassankashi