So, I am very new to Python and Pandas (and programming in general), but am having trouble with a seemingly simple function. So I created the following dataframe using data pulled with a SQL query (if you need to see the SQL query, let me know and I'll paste it)
spydata = pd.DataFrame(row,columns=['date','ticker','close', 'iv1m', 'iv3m'])
tickerlist = unique(spydata[spydata['date'] == '2013-05-31'])
After that, I have written a function to create some new columns in the dataframe using the data already held in it:
def demean(arr):
arr['retlog'] = log(arr['close']/arr['close'].shift(1))
arr['10dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
arr['60dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
arr['90dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
arr['1060rat'] = arr['10dvol']/arr['60dvol']
arr['1090rat'] = arr['10dvol']/arr['90dvol']
arr['60dis'] = (arr['1060rat'] - arr['1060rat'].mean())/arr['1060rat'].std()
arr['90dis'] = (arr['1090rat'] - arr['1090rat'].mean())/arr['1090rat'].std()
return arr
The only part that I'm having a problem with is the first line of the function:
arr['retlog'] = log(arr['close']/arr['close'].shift(1))
Which, when I run, with this command, I get an error:
result = spydata.groupby(['ticker']).apply(demean)
Error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-196-4a66225e12ea> in <module>()
----> 1 result = spydata.groupby(['ticker']).apply(demean)
2 results2 = result[result.date == result.date.max()]
3
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in apply(self, func, *args, **kwargs)
323 func = _intercept_function(func)
324 f = lambda g: func(g, *args, **kwargs)
--> 325 return self._python_apply_general(f)
326
327 def _python_apply_general(self, f):
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in _python_apply_general(self, f)
326
327 def _python_apply_general(self, f):
--> 328 keys, values, mutated = self.grouper.apply(f, self.obj, self.axis)
329
330 return self._wrap_applied_output(keys, values,
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in apply(self, f, data, axis, keep_internal)
632 # group might be modified
633 group_axes = _get_axes(group)
--> 634 res = f(group)
635 if not _is_indexed_like(res, group_axes):
636 mutated = True
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in <lambda>(g)
322 """
323 func = _intercept_function(func)
--> 324 f = lambda g: func(g, *args, **kwargs)
325 return self._python_apply_general(f)
326
<ipython-input-195-47b6faa3f43c> in demean(arr)
1 def demean(arr):
----> 2 arr['retlog'] = log(arr['close']/arr['close'].shift(1))
3 arr['10dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
4 arr['60dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
5 arr['90dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
AttributeError: log
I have tried changing the function to np.log as well as math.log, in which case I get the error
TypeError: only length-1 arrays can be converted to Python scalars
I've tried looking this up, but haven't found anything directly applicable. Any clues?
Log and natural Logarithmic value of a column in Pandas – Python. Log and natural logarithmic value of a column in pandas can be calculated using the log(), log2(), and log10() numpy functions respectively.
Numba can be used in 2 ways with pandas: Specify the engine="numba" keyword in select pandas methods. Define your own Python function decorated with @jit and pass the underlying NumPy array of Series or DataFrame (using to_numpy() ) into the function.
while iloc() method is integer-based which means we have to just pass the integer index to select specific row/columns. while iloc() method does not include the last element.
This happens when the datatype of the column is not numeric. Try
arr['retlog'] = log(arr['close'].astype('float64')/arr['close'].astype('float64').shift(1))
I suspect that the numbers are stored as generic 'object' types, which I know causes log to throw that error. Here is a simple illustration of the problem:
In [15]: np.log(Series([1,2,3,4], dtype='object'))
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-15-25deca6462b7> in <module>()
----> 1 np.log(Series([1,2,3,4], dtype='object'))
AttributeError: log
In [16]: np.log(Series([1,2,3,4], dtype='float64'))
Out[16]:
0 0.000000
1 0.693147
2 1.098612
3 1.386294
dtype: float64
Your attempt with math.log
did not work because that function is designed for single numbers (scalars) only, not lists or arrays.
For what it's worth, I think this is a confusing error message; it once stumped me for awhile, anyway. I wonder if it can be improved.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With