I am trying to train my custom model on Cifar 10 dataset. My model's code is below: -
class cifar10Model(keras.Model):
def __init__(self):
super(cifar10Model, self).__init__()
self.conv1 = keras.layers.Conv2D(32, 3, activation='relu', input_shape=(32, 32, 3))
self.pool1 = keras.layers.MaxPool2D((3, 3))
self.batch_norm1 = keras.layers.BatchNormalization()
self.dropout1 = keras.layers.Dropout(0.1)
self.conv2 = keras.layers.Conv2D(64, 3, activation='relu')
self.pool2 = keras.layers.MaxPool2D((3, 3))
self.batch_norm2 = keras.layers.BatchNormalization()
self.dropout2 = keras.layers.Dropout(0.2)
self.conv3 = keras.layers.Conv2D(128, 3, activation='relu')
self.pool3 = keras.layers.MaxPool2D((3, 3))
self.batch_norm3 = keras.layers.BatchNormalization()
self.dropout3 = keras.layers.Dropout(0.3)
self.flatten = keras.layers.Flatten()
self.dense1 = keras.layers.Dense(128, activation='relu')
self.dense2 = keras.layers.Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.batch_norm1(X)
x = self.dropout1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.batch_norm2(X)
x = self.dropout2(x)
x = self.conv3(x)
x = self.pool3(x)
x = self.batch_norm3(x)
x = self.dropout3(x)
x = self.flatten(x)
x = self.dense1(x)
return self.dense2(x)
model = cifar10Model()
When i run this code this gives me no error.
Then i defined my training loop
loss_object = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = keras.optimizers.Adam()
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
grad = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grad, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
@tf.function
def test_step(images, labels):
predictions = model(images)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
epochs = 10
for epoch in range(epochs):
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_dataset:
train_step(images, labels)
for images, labels in test_dataset:
test_step(images, labels)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print(template.format(epoch + 1,
train_loss.result(),
train_accuracy.result() * 100,
test_loss.result(),
test_accuracy.result() * 100))
When i run this code, i get the following error
NotImplementedError: When subclassing the `Model` class, you should implement a `call` method.
I am currently running my code on google colab.
My colab link is https://colab.research.google.com/drive/1sOlbRpPRdyOCJI0zRFfIA-Trj1vrIbWY?usp=sharing
My tensorflow version on colab is 2.2.0
Also, when i tried to predict labels from untrained model by this code :-
print(model(train_images))
This also gives me the same error. The error is saying that i have not implemented the call method on model. but, i have defined the call method.
I also tried by changing the call method to __call__
method.
But still, it gives me the same error.
Thanks in advance :-
The problem is with indentation. You've defined call
method inside __init__
. Try defining it outside the __init__
method as follows:
class cifar10Model(keras.Model):
def __init__(self):
super(cifar10Model, self).__init__()
self.conv1 = keras.layers.Conv3D(32, 3, activation='relu', input_shape=(32, 32, 3))
self.pool1 = keras.layers.MaxPool3D((3, 3, 3))
self.batch_norm1 = keras.layers.BatchNormalization()
self.dropout1 = keras.layers.Dropout(0.1)
self.conv2 = keras.layers.Conv3D(64, 3, activation='relu')
self.pool2 = keras.layers.MaxPool3D((3, 3, 3))
self.batch_norm2 = keras.layers.BatchNormalization()
self.dropout2 = keras.layers.Dropout(0.2)
self.conv3 = keras.layers.Conv3D(128, 3, activation='relu')
self.pool3 = keras.layers.MaxPool3D((3, 3, 3))
self.batch_norm3 = keras.layers.BatchNormalization()
self.dropout3 = keras.layers.Dropout(0.3)
self.flatten = keras.layers.Flatten()
self.dense1 = keras.layers.Dense(128, activation='relu')
self.dense2 = keras.layers.Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.batch_norm1(X)
x = self.dropout1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.batch_norm2(X)
x = self.dropout2(x)
x = self.conv3(x)
x = self.pool3(x)
x = self.batch_norm3(X)
x = self.dropout3(x)
x = self.flatten(x)
x = self.dense1(x)
return self.dense2(x)
model = cifar10Model()
Hope this helps.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With