I am trying to tune a GB Classifier in sklearn using GridsearchCV. Here is the code:
from sklearn.grid_search import GridSearchCV
from sklearn.ensemble import GradientBoostingClassifier
param_grid = {'learning_rate': [0.1, 0.01, 0.001],
'max_depth': [4, 6],
'min_samples_leaf': [9, 17],
'max_features': [0.3, 0.1]}
est = GradientBoostingClassifier(n_estimators=3000)
# this may take some minutes
gs_cv = GridSearchCV(est, param_grid, scoring='f1', n_jobs=-1, verbose=1, pre_dispatch=5).fit(X.values, y)
# best hyperparameter setting
print 'Best hyperparameters: %r' % gs_cv.best_params_
The dataset X is 1 million rows * 245 features. I am running on a machine with close to 32 cores. I get the following error when I run the above code,
error Traceback (most recent call last)
<ipython-input-22-cb545fec9989> in <module>()
9 est = GradientBoostingClassifier(n_estimators=3000)
10 # this may take some minutes
---> 11 gs_cv = GridSearchCV(est, param_grid, scoring='f1', n_jobs=-1, verbose=1, pre_dispatch=5).fit(X.values, y)
12
13 # best hyperparameter setting
/var/webeng/opensource/aetna-anaconda/lib/python2.7/site-packages/sklearn/grid_search.pyc in fit(self, X, y)
594
595 """
--> 596 return self._fit(X, y, ParameterGrid(self.param_grid))
597
598
/var/webeng/opensource/aetna-anaconda/lib/python2.7/site-packages/sklearn/grid_search.pyc in _fit(self, X, y, parameter_iterable)
376 train, test, self.verbose, parameters,
377 self.fit_params, return_parameters=True)
--> 378 for parameters in parameter_iterable
379 for train, test in cv)
380
/var/webeng/opensource/aetna-anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
658 # consumption.
659 self._iterating = False
--> 660 self.retrieve()
661 # Make sure that we get a last message telling us we are done
662 elapsed_time = time.time() - self._start_time
/var/webeng/opensource/aetna-anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
510 self._lock.release()
511 try:
--> 512 self._output.append(job.get())
513 except tuple(self.exceptions) as exception:
514 try:
/var/webeng/opensource/aetna-anaconda/lib/python2.7/multiprocessing/pool.pyc in get(self, timeout)
556 return self._value
557 else:
--> 558 raise self._value
559
560 def _set(self, i, obj):
error: 'i' format requires -2147483648 <= number <= 2147483647
When I run the same code with a subset of 1000 rows, it works. Tried varying pre_dispatch but still getting issues. Is it because of the data size or something else? Thanks.
Using sklearn 0.15.2 on Python 2.7.9
I see 3 possible ways to solve this:
1) try to update sklearn to the latest version
2) try to replace
from sklearn.grid_search import GridSearchCV
with:
from sklearn.model_selection import GridSearchCV
3) If you want to use n_jobs > 1 inside GridSearchCV then you have to protect the script using if __name__ == '__main__':
e.g.
if __name__ == '__main__':
clf = MLPClassifier()
my_param_grid = {'activation': ('tanh', 'relu')}
grid= model_selection.GridSearchCV(clf,
param_grid=my_param_grid,n_jobs=-1)
grid.fit(X, y)
Consider doing all the 3 steps
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With