I was trying to write an immutable Matrix[A]
class. I want the class to be covariant on A
but when I put +
in front of A
compiler starts complaining about some operations in the class.
Following is a relevant subset of my Matrix
class (The actual class is some 5 times bigger than the following subset):
class Matrix[+A] private(val contents: Vector[Vector[A]])(implicit numericEv: Numeric[A])
extends ((Int, Int) => A) with Proxy {
import numericEv._
import Prelude._
// delegate `equals` and `hashCode` implementations to `contents`
override def self = contents
val nRows: Int = contents.length
val nColumns: Int = contents(0).length.ensuring { len =>
contents.forall(_.length == len)
}
def dimensions = (nRows, nColumns)
def isSquare = nRows == nColumns
def hasSameOrderAs[B : Numeric](that: Matrix[B]) = this.dimensions == that.dimensions
def isComformableWith[B : Numeric](that: Matrix[B]) = this.nColumns == that.nRows
private def assertSameOrder[B : Numeric](that: Matrix[B]) {
assert(this.hasSameOrderAs(that), "Matrices differ in dimensions.")
}
private def assertIsSquare() {
assert(this.isSquare, "Not a square matrix.")
}
def zipWith[B : Numeric, C : Numeric](that: Matrix[B])(f: (A, B) => C): Matrix[C] = {
assertSameOrder(that)
val zippedContents = (contents, that.contents).zipped.map((v1, v2) => (v1, v2).zipped.map(f))
Matrix(zippedContents)
}
def map[B : Numeric](f: A => B): Matrix[B] = {
Matrix(contents.map(_.map(f)))
}
def transpose: Matrix[A] = {
assertIsSquare()
Matrix(contents.transpose)
}
def +(that: Matrix[A]): Matrix[A] = this.zipWith(that)(_ + _)
def -(that: Matrix[A]): Matrix[A] = this.zipWith(that)(_ - _)
def *(scalar: A): Matrix[A] = this.map(_ * scalar)
def *(that: Matrix[A]): Matrix[A] = {
assert(this.isComformableWith(that))
Matrix.tabulate(this.nRows, that.nColumns) { (r, c) =>
(this(r), that.transpose(c)).zipped.map(_ * _).sum
}
}
}
object Matrix {
def apply[A : Numeric](rows: Vector[A]*): Matrix[A] = Matrix(Vector(rows: _*))
def apply[A : Numeric](contents: Vector[Vector[A]]): Matrix[A] = new Matrix(contents)
def tabulate[A : Numeric](nRows: Int, nColumns: Int)(f: (Int, Int) => A): Matrix[A] = {
Matrix(Vector.tabulate(nRows, nColumns)(f))
}
}
Compiler shows the error "Covariant type A occurs in contravariant position" for the last four operations in the class. I am unable to understand the reason for these errors, and how to get rid of it. Please explain the reason behind these errors and suggest a way to work around them. Thanks.
The reason for these errors is that it is not type-safe to declare it as you are doing. For instance, it would be possible to do this, otherwise:
class A(val x: Int)
class B(x: Int, val y: Int) extends A(x)
object NA extends Numeric[A] {
def toDouble(x: A): Double = x.x.toDouble
def toFloat(x: A): Float = x.x.toFloat
def toLong(x: A): Long = x.x.toLong
def toInt(x: A): Int = x.x
def fromInt(x: Int): A = new A(x)
def negate(x: A): A = new A(-x.x)
def times(x: A,y: A): A = new A(x.x * y.x)
def minus(x: A,y: A): A = new A(x.x - y.x)
def plus(x: A,y: A): A = new A(x.x + y.x)
def compare(x: A,y: A): Int = implicitly[Numeric[Int]].compare(x.x, y.x)
}
object NB extends Numeric[B] {
def toDouble(x: B): Double = x.x.toDouble / x.y.toDouble
def toFloat(x: B): Float = x.x.toFloat / x.y.toFloat
def toLong(x: B): Long = (x.x / x.y).toLong
def toInt(x: B): Int = x.x / x.y
def fromInt(x: Int): B = new B(x, 1)
def negate(x: B): B = new B(-x.x, x.y)
def times(x: B,y: B): B = new B(x.x * y.x, x.y * y.y)
def minus(x: B,y: B): B = new B(x.x * y.y - y.x * x.y, x.y * y.y)
def plus(x: B,y: B): B = new B(x.x * y.y + y.x * x.y, x.y * y.y)
def compare(x: B,y: B): Int = implicitly[Numeric[Int]].compare(x.x * x.y, y.x * y.y)
}
val mb = Matrix.tabulate(10, 10)((x, y) => new B(x, y))
def f(m: Matrix[A]) = {
val ma = Matrix.tabulate(m.nRows, m.nColumns)((x, y) => 1)
m + ma
}
f(mb)
Note that m + ma
could not work, since m.+
expects an object of type B
. If Scala allowed you to write it the way you did, though, this would be allowed.
The common way to avoid this problem is to write the method like this:
def +[B >: A](that: Matrix[B])(implicit num: Numeric[B]): Matrix[B] = this.zipWith(that)(B.plus)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With