I have a df:
group number id
1 A abcd 1
2 A abcd 2
3 A abcd 3
4 A efgh 4
5 A efgh 5
6 B abcd 1
7 B abcd 2
8 B abcd 3
9 B abcd 9
10 B ijkl 10
I want to make it like this:
group number data1 data2 data3 data4 Length
1 A abcd 1 2 3 3
2 A efgh 4 5 2
3 B abcd 1 2 3 9 4
4 B ijkl 10 1
I am sorry I can only make it to df2 like this:
group number data Length
1 A abcd c(1,2,3) 3
2 A efgh c(4,5) 2
3 B abcd c(1,2,3,9) 4
4 B ijkl 10 1
My code is here:
library(tidyverse)
df <- data.frame (group = c(rep('A',5),rep("B",5)),
number = c(rep('abcd',3),rep('efgh',2),rep('abcd',4),rep('ijkl',1)),
id = c(1,2,3,4,5,1,2,3,9,10))
df2 <- df %>%
group_by(group,number) %>%
nest() %>%
mutate(data=map(data,~unlist(.x, recursive = TRUE, use.names = FALSE)),
Length= map(data, ~length(.x)))
Please feel free to start with df or df2, with(out) any package is fine.
You can change the name count
to length
(also, I perfer make the 'space' to NA
, If want to change it , df2[is.na(df2)]=''
)
Option 1
df <- data.frame (group = c(rep('A',5),rep("B",5)),
number = c(rep('abcd',3),rep('efgh',2),rep('abcd',4),rep('ijkl',1)),
id = c(1,2,3,4,5,1,2,3,9,10))
df2 <- df %>%
group_by(group,number) %>%
mutate(data=toString(id),count=n())
library(splitstackshape)
cSplit(df2, 3, drop = TRUE,sep=',')
group number count data_1 data_2 data_3 data_4
1: A abcd 3 1 2 3 NA
2: A efgh 2 4 5 NA NA
3: B abcd 4 1 2 3 9
4: B ijkl 1 10 NA NA NA
Option 2
library(dplyr)
library(tidyr)
df2 <- df %>%
group_by(group,number) %>%
summarise(data=toString(id),count=n())%>%separate_rows(data)%>% mutate(Col = paste0("data", 1:n()))%>%spread(Col, data)
df2
# A tibble: 4 x 8
# Groups: group [2]
group number count data1 data2 data3 data4 data5
* <fctr> <fctr> <int> <chr> <chr> <chr> <chr> <chr>
1 A abcd 3 1 2 3 <NA> <NA>
2 A efgh 2 <NA> <NA> <NA> 4 5
3 B abcd 4 1 2 3 9 <NA>
4 B ijkl 1 <NA> <NA> <NA> <NA> 10
I must give it to you blindly but that should work or be close :
library(tidyverse)
df %>%
group_by(group,number) %>%
mutate(key = paste0("data",row_number()),length = n()) %>%
ungroup %>%
spread(key,id,"")
To make it work from your nested data I think you have to change these vectors into 1 line data.frames of same col numbers and names , then use unnest, much more complicated! :)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With