I'm planning a strategy for querying millions of docs in date and user directions.
What are the differences or advantages when using routing or indexing?
Scalyr is an event data analytics and log management tool that could replace Elasticsearch. The way Scalyr is designed, you can still use Kibana and the same old queries. But instead of Elasticsearch as the search engine, you'd be using Scalyr. Scalyr is really fast, even at petabyte scale.
Elasticsearch is fast. Because Elasticsearch is built on top of Lucene, it excels at full-text search. Elasticsearch is also a near real-time search platform, meaning the latency from the time a document is indexed until it becomes searchable is very short — typically one second.
With our updated cluster and NVMe usage, we can easily sustain an indexing rate of nearly 5 million records per second (averaging closer to 25,000 records per second per node).
One of the design patterns that Shay Banon @ Elasticsearch recommends is: index by time range, route by user and use aliasing.
Create an index for each day (or a date range) and route documents on user field, so you could 'retire' older logs and you don't need queries to execute on all shards:
$ curl -XPOST localhost:9200/user_logs_20140418 -d '{
"mappings" : {
"user_log" : {
"_routing": {
"required": true,
"path": "user"
},
"properties" : {
"user" : { "type" : "string" },
"log_time": { "type": "date" }
}
}
}
}'
Create an alias to filter and route on users, so you could query for documents of user 'foo':
$ curl -XPOST localhost:9200/_aliases -d '{
"actions": [{
"add": {
"alias": "user_foo",
"filter": {"term": {"user": "foo"}},
"routing": "foo"
}
}]
}'
Create aliases for time windows, so you could query for documents 'this_week':
$ curl -XPOST localhost:9200/_aliases -d '{
"actions": [{
"add": {
"index": ["user_logs_20140418", "user_logs_20140417", "user_logs_20140416", "user_logs_20140415", "user_logs_20140414"],
"alias": "this_week"
},
"remove": {
"index": ["user_logs_20140413", "user_logs_20140412", "user_logs_20140411", "user_logs_20140410", "user_logs_20140409", "user_logs_20140408", "user_logs_20140407"],
"alias": "this_week"
}
}]
}'
Some of the advantages of this approach:
Indexing is the process of parsing [Tokenized, filtered] the document that you indexed[Inverted Index]. It's like appendix of an text book.
When the indexed data exceeds one server limit. instead of upgrading server configurations, add another server and share data with them. This process is called as sharding.
If we search it will search in all shards and perform map reduce and return results.If we group similar data together and search some data in specific data means it reduce processing power and increase speed.
Routing is used to store group of data in particular shards.To select a field for routing. The field should be present in all docs,field should not contains different values.
Note:Routing should be used in multiple shards environment[not in single node]. If we use routing in single node .There is no use of it.
Let's define the terms first.
Indexing, in the context of Elasticsearch, can mean many things:
Judging by the context, "indexing by user" and "indexing by date" refers to having one index per user or one index per date interval (e.g. day).
Routing refers to sending documents to shards as I described earlier. By default, this is done quite randomly: a hash range is divided by the number of shards. When a document comes in, Elasticsearch hashes its _id
. The hash falls into the hash range of one of the shards ==> that's where the document goes.
You can use custom routing to control this: instead of hashing the _id
, Elasticsearch can hash a routing value (e.g. the user name). As a result, all documents with the same routing value (i.e. same user) land on the same shard. Routing can then be used at query time, so that Elasticsearch queries just one shard (per index) instead of N. This can bring massive query performance gains (check slide 24 in particular).
Back to the question at hand, I would take it as "what are the differences or advantages when breaking data down by index or using routing?"
To answer, the strategy should account for:
In practice, I've seen the following designs:
I didn't see a design with one index per user and routing by date interval yet. The main disadvantage here is that you'll likely write to one shard at a time (the shard containing today's hash). This will limit your write throughput and your ability to balance writes. But maybe this design works well for a high-but-not-huge number of users (e.g. 1K), few writes and lots of queries for limited time intervals.
BTW, if you want to learn more about this stuff, we have an Elasticsearch Operations training, where we discuss a lot about architecture, trade-offs, how Elasticsearch works under the hood. (disclosure: I deliver this class)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With