I'm trying to upload a pandas.DataFrame
to Google Big Query using the pandas.DataFrame.to_gbq()
function documented here. The problem is that to_gbq()
takes 2.3 minutes while uploading directly to Google Cloud Storage takes less than a minute. I'm planning to upload a bunch of dataframes (~32) each one with a similar size, so I want to know what is the faster alternative.
This is the script that I'm using:
dataframe.to_gbq('my_dataset.my_table', 'my_project_id', chunksize=None, # I have tried with several chunk sizes, it runs faster when it's one big chunk (at least for me) if_exists='append', verbose=False ) dataframe.to_csv(str(month) + '_file.csv') # the file size its 37.3 MB, this takes almost 2 seconds # manually upload the file into GCS GUI print(dataframe.shape) (363364, 21)
My question is, what is faster?
Dataframe
using pandas.DataFrame.to_gbq()
functionDataframe
as CSV and then upload it as a file to BigQuery using the Python API Dataframe
as CSV and then upload the file to Google Cloud Storage using this procedure and then reading it from BigQueryUpdate:
Alternative 1 seems faster than Alternative 2 , (using pd.DataFrame.to_csv()
and load_data_from_file()
17.9 secs more in average with 3 loops
):
def load_data_from_file(dataset_id, table_id, source_file_name): bigquery_client = bigquery.Client() dataset_ref = bigquery_client.dataset(dataset_id) table_ref = dataset_ref.table(table_id) with open(source_file_name, 'rb') as source_file: # This example uses CSV, but you can use other formats. # See https://cloud.google.com/bigquery/loading-data job_config = bigquery.LoadJobConfig() job_config.source_format = 'text/csv' job_config.autodetect=True job = bigquery_client.load_table_from_file( source_file, table_ref, job_config=job_config) job.result() # Waits for job to complete print('Loaded {} rows into {}:{}.'.format( job.output_rows, dataset_id, table_id))
Due to the separation between compute and storage layers, BigQuery requires an ultra-fast network which can deliver terabytes of data in seconds directly from storage into compute for running Dremel jobs. Google's Jupiter network enables BigQuery service to utilize 1 Petabit/sec of total bisection bandwidth.
I did the comparison for alternative 1 and 3 in Datalab
using the following code:
from datalab.context import Context import datalab.storage as storage import datalab.bigquery as bq import pandas as pd from pandas import DataFrame import time # Dataframe to write my_data = [{1,2,3}] for i in range(0,100000): my_data.append({1,2,3}) not_so_simple_dataframe = pd.DataFrame(data=my_data,columns=['a','b','c']) #Alternative 1 start = time.time() not_so_simple_dataframe.to_gbq('TestDataSet.TestTable', Context.default().project_id, chunksize=10000, if_exists='append', verbose=False ) end = time.time() print("time alternative 1 " + str(end - start)) #Alternative 3 start = time.time() sample_bucket_name = Context.default().project_id + '-datalab-example' sample_bucket_path = 'gs://' + sample_bucket_name sample_bucket_object = sample_bucket_path + '/Hello.txt' bigquery_dataset_name = 'TestDataSet' bigquery_table_name = 'TestTable' # Define storage bucket sample_bucket = storage.Bucket(sample_bucket_name) # Create or overwrite the existing table if it exists table_schema = bq.Schema.from_dataframe(not_so_simple_dataframe) # Write the DataFrame to GCS (Google Cloud Storage) %storage write --variable not_so_simple_dataframe --object $sample_bucket_object # Write the DataFrame to a BigQuery table table.insert_data(not_so_simple_dataframe) end = time.time() print("time alternative 3 " + str(end - start))
and here are the results for n = {10000,100000,1000000}:
n alternative_1 alternative_3 10000 30.72s 8.14s 100000 162.43s 70.64s 1000000 1473.57s 688.59s
Judging from the results, alternative 3 is faster than alternative 1.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With