I'm looking for an efficient algorithm for scrambling a set of letters into a permutation containing the maximum number of words.
For example, say I am given the list of letters: {e, e, h, r, s, t}. I need to order them in such a way as to contain the maximum number of words. If I order those letters into "theres", it contain the words "the", "there", "her", "here", and "ere". So that example could have a score of 5, since it contains 5 words. I want to order the letters in such a way as to have the highest score (contain the most words).
A naive algorithm would be to try and score every permutation. I believe this is O(n!), so 720 different permutations would be tried for just the 6 letters above (including some duplicates, since the example has e twice). For more letters, the naive solution quickly becomes impossible, of course.
The algorithm doesn't have to actually produce the very best solution, but it should find a good solution in a reasonable amount of time. For my application, simply guessing (Monte Carlo) at a few million permutations works quite poorly, so that's currently the mark to beat.
I am currently using the Aho-Corasick algorithm to score permutations. It searches for each word in the dictionary in just one pass through the text, so I believe it's quite efficient. This also means I have all the words stored in a trie, but if another algorithm requires different storage that's fine too. I am not worried about setting up the dictionary, just the run time of the actual ordering and searching. Even a fuzzy dictionary could be used if needed, like a Bloom Filter.
For my application, the list of letters given is about 100, and the dictionary contains over 100,000 entries. The dictionary never changes, but several different lists of letters need to be ordered.
I am considering trying a path finding algorithm. I believe I could start with a random letter from the list as a starting point. Then each remaining letter would be used to create a "path." I think this would work well with the Aho-Corasick scoring algorithm, since scores could be built up one letter at a time. I haven't tried path finding yet though; maybe it's not a even a good idea? I don't know which path finding algorithm might be best.
Another algorithm I thought of also starts with a random letter. Then the dictionary trie would be searched for "rich" branches containing the remain letters. Dictionary branches containing unavailable letters would be pruned. I'm a bit foggy on the details of how this would work exactly, but it could completely eliminate scoring permutations.
Here's an idea, inspired by Markov Chains:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With