In NumPy, how can you efficiently make a 1-D object into a 2-D object where the singleton dimension is inferred from the current object (i.e. a list should go to either a 1xlength or lengthx1 vector)?
# This comes from some other, unchangeable code that reads data files.
my_list = [1,2,3,4]
# What I want to do:
my_numpy_array[some_index,:] = numpy.asarray(my_list)
# The above doesn't work because of a broadcast error, so:
my_numpy_array[some_index,:] = numpy.reshape(numpy.asarray(my_list),(1,len(my_list)))
# How to do the above without the call to reshape?
# Is there a way to directly convert a list, or vector, that doesn't have a
# second dimension, into a 1 by length "array" (but really it's still a vector)?
You can add new dimensions to a NumPy array ndarray (= unsqueeze a NumPy array) with np. newaxis , np. expand_dims() and np. reshape() (or reshape() method of ndarray ).
You can slice a numpy array is a similar way to slicing a list - except you can do it in more than one dimension. As with indexing, the array you get back when you index or slice a numpy array is a view of the original array.
NumPy: expand_dims() function The expand_dims() function is used to expand the shape of an array. Insert a new axis that will appear at the axis position in the expanded array shape. Input array. IPosition in the expanded axes where the new axis is placed.
Numpy with Python Three types of indexing methods are available − field access, basic slicing and advanced indexing. Basic slicing is an extension of Python's basic concept of slicing to n dimensions. A Python slice object is constructed by giving start, stop, and step parameters to the built-in slice function.
In the most general case, the easiest way to add extra dimensions to an array is by using the keyword None
when indexing at the position to add the extra dimension. For example
my_array = numpy.array([1,2,3,4])
my_array[None, :] # shape 1x4
my_array[:, None] # shape 4x1
Why not simply add square brackets?
>> my_list
[1, 2, 3, 4]
>>> numpy.asarray([my_list])
array([[1, 2, 3, 4]])
>>> numpy.asarray([my_list]).shape
(1, 4)
.. wait, on second thought, why is your slice assignment failing? It shouldn't:
>>> my_list = [1,2,3,4]
>>> d = numpy.ones((3,4))
>>> d
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]])
>>> d[0,:] = my_list
>>> d[1,:] = numpy.asarray(my_list)
>>> d[2,:] = numpy.asarray([my_list])
>>> d
array([[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.]])
even:
>>> d[1,:] = (3*numpy.asarray(my_list)).T
>>> d
array([[ 1., 2., 3., 4.],
[ 3., 6., 9., 12.],
[ 1., 2., 3., 4.]])
import numpy as np
a = np.random.random(10)
sel = np.at_least2d(a)[idx]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With