I have a dataframe df
:
df = pd.DataFrame({'id1':[1,1,1,1,1,4,4,4,6,6],
'id2':[45,45,33,33,33,1,1,1,34,34],
'vals':[0.1,0.2,0.6,0.1,0.15,0.34,0.12,0.5,0.4,0.45],
'date':pd.to_datetime(['2017-01-01','2017-01-02','2017-01-01',
'2017-04-01','2017-04-02','2017-01-01',
'2017-01-02','2017-01-03','2017-01-04',
'2017-01-05'])})
I want to create lag terms based on time for each group of id1
and id2
. For example, t_1
would be the value from the day before. t_2
would be the value from two days before. If there is no value from two-days before, I would like it to be nan
. This would be the output for the above dataframe:
date id1 id2 vals t_1 t_2
0 2017-01-01 1 33 0.60 NaN NaN
1 2017-04-01 1 33 0.10 NaN NaN
2 2017-04-02 1 33 0.15 0.10 NaN
0 2017-01-01 1 45 0.10 NaN NaN
1 2017-01-02 1 45 0.20 0.10 NaN
0 2017-01-01 4 1 0.34 NaN NaN
1 2017-01-02 4 1 0.12 0.34 NaN
2 2017-01-03 4 1 0.50 0.12 0.34
0 2017-01-04 6 34 0.40 NaN NaN
1 2017-01-05 6 34 0.45 0.40 NaN
I can do this by using the code below, but it is extremely inefficient for a large number of groups - i.e. if I have 10000 x 500 unique combinations of id1
and id2
, several days of data for each, and I want 2 lag terms, it takes a long time.
num_of_lags = 2
for i in range(1, num_of_lags+1):
final = pd.DataFrame()
for name, group in df.groupby(['id1', 'id2']):
temp = group.set_index('date', verify_integrity=False)
temp = temp.shift(i, 'D').rename(columns={'vals':'t_' + str(i)}).reset_index()
group = pd.merge(group, temp[['id1', 'id2', 'date', 't_' + str(i)]],
on=['id1', 'id2', 'date'], how='left')
final = pd.concat([final, group], axis=0)
df = final.copy()
Is there a more efficient way of doing this?
By using a combination of assigning a group with unstack and shift its possible to avoid the usage of apply, resulting in a great speedup.
def compute_shift(df):
df['group_no'] = df.groupby(['id1','id2']).ngroup()
tmp = df[['date','vals','group_no']].set_index(['group_no','date'])\
.unstack('group_no')\
.resample('D').asfreq()
tmp1 = tmp.shift(1).stack('group_no')['vals'].rename('t_1')
tmp2 = tmp.shift(2).stack('group_no')['vals'].rename('t_2')
df = df.join(tmp1, on=['date','group_no'])
df = df.join(tmp2, on=['date','group_no'])
return df
compute_shift(df)
date id1 id2 vals group_no t_1 t_2
0 2017-01-01 1 45 0.10 1 NaN NaN
1 2017-01-02 1 45 0.20 1 0.10 NaN
2 2017-01-01 1 33 0.60 0 NaN NaN
3 2017-04-01 1 33 0.10 0 NaN NaN
4 2017-04-02 1 33 0.15 0 0.10 NaN
5 2017-01-01 4 1 0.34 2 NaN NaN
6 2017-01-02 4 1 0.12 2 0.34 NaN
7 2017-01-03 4 1 0.50 2 0.12 0.34
8 2017-01-04 6 34 0.40 3 NaN NaN
9 2017-01-05 6 34 0.45 3 0.40 NaN
To compare performance I created a fake dataset of reasonable size:
df = pd.DataFrame({'date':np.random.randint(1, 1000, 10**6),
'id1':np.random.randint(1, 100, 10**6),
'id2':np.random.randint(1, 100, 10**6),
'vals':np.random.random(10**6)})
df = df.drop_duplicates(subset=['date','id1','id2'], keep='last')
df = df.sort_values('date')
dates = pd.date_range('20150101','20180101').to_series().reset_index(drop=True)
df['date'] = df['date'].map(dates)
If we compare performance with the solution of Wen and Scott:
%timeit df.groupby(['id1','id2'],sort=False).apply(lambda x : x['vals'].shift()*((x['date'] - pd.to_timedelta(1, unit='d')).isin(x['date'].tolist())).replace(False,np.nan))
824 ms ± 19.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit df.groupby(['id1','id2'], as_index=False)\
.apply(lambda x: x.assign(t_1=x.vals.resample('D').asfreq().shift(1),\
t_2=x.vals.resample('D').asfreq().shift(2)))
1.38 s ± 25.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit compute_shift(df)
96.4 ms ± 2.14 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
If your DataFrame is not that big i would probably prefer Scott Bostons solution because it feels cleaner but if runtime is a concern unstack+shift+join is faster.
EDIT: Added resample to fill missing dates.
You can try this using set_index
, resample
and shift
:
df1 = df.set_index('date')
df1.groupby(['id1','id2'], as_index=False)\
.apply(lambda x: x.assign(t_1=x.vals.resample('D').asfreq().shift(1),
t_2=x.vals.resample('D').asfreq().shift(2)))
Output:
id1 id2 vals t_1 t_2
date
0 2017-01-01 1 33 0.60 NaN NaN
2017-04-01 1 33 0.10 NaN NaN
2017-04-02 1 33 0.15 0.10 NaN
1 2017-01-01 1 45 0.10 NaN NaN
2017-01-02 1 45 0.20 0.10 NaN
2 2017-01-01 4 1 0.34 NaN NaN
2017-01-02 4 1 0.12 0.34 NaN
2017-01-03 4 1 0.50 0.12 0.34
3 2017-01-04 6 34 0.40 NaN NaN
2017-01-05 6 34 0.45 0.40 NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With