I'm trying to find an efficient way to generate rolling counts or sums in pandas given a grouping and a date range. Eventually, I want to be able to add conditions, ie. evaluating a 'type' field, but I'm not there just yet. I've written something to get the job done, but feel that there could be a more direct way of getting to the desired result.
My pandas data frame currently looks like this, with the desired output being put in the last column 'rolling_sales_180'.
name date amount rolling_sales_180
0 David 2015-01-01 100 100.0
1 David 2015-01-05 500 600.0
2 David 2015-05-30 50 650.0
3 David 2015-07-25 50 100.0
4 Ryan 2014-01-04 100 100.0
5 Ryan 2015-01-19 500 500.0
6 Ryan 2016-03-31 50 50.0
7 Joe 2015-07-01 100 100.0
8 Joe 2015-09-09 500 600.0
9 Joe 2015-10-15 50 650.0
My current solution and environment can be sourced below. I've been modeling my solution from this R Q&A in stackoverflow. Efficient way to perform running total in the last 365 day window
import pandas as pd
import numpy as np
def trans_date_to_dist_matrix(date_col): # used to create a distance matrix
x = date_col.tolist()
y = date_col.tolist()
data = []
for i in x:
tmp = []
for j in y:
tmp.append(abs((i - j).days))
data.append(tmp)
del tmp
return pd.DataFrame(data=data, index=date_col.values, columns=date_col.values)
def lower_tri(x_col, date_col, win): # x_col = column user wants a rolling sum of ,date_col = dates, win = time window
dm = trans_date_to_dist_matrix(date_col=date_col) # dm = distance matrix
dm = dm.where(dm <= win) # find all elements of the distance matrix that are less than window(time)
lt = dm.where(np.tril(np.ones(dm.shape)).astype(np.bool)) # lt = lower tri of distance matrix so we get only future dates
lt[lt >= 0.0] = 1.0 # cleans up our lower tri so that we can sum events that happen on the day we are evaluating
lt = lt.fillna(0) # replaces NaN with 0's for multiplication
return pd.DataFrame(x_col.values * lt.values).sum(axis=1).tolist()
def flatten(x):
try:
n = [v for sl in x for v in sl]
return [v for sl in n for v in sl]
except:
return [v for sl in x for v in sl]
data = [
['David', '1/1/2015', 100], ['David', '1/5/2015', 500], ['David', '5/30/2015', 50], ['David', '7/25/2015', 50],
['Ryan', '1/4/2014', 100], ['Ryan', '1/19/2015', 500], ['Ryan', '3/31/2016', 50],
['Joe', '7/1/2015', 100], ['Joe', '9/9/2015', 500], ['Joe', '10/15/2015', 50]
]
list_of_vals = []
dates_df = pd.DataFrame(data=data, columns=['name', 'date', 'amount'], index=None)
dates_df['date'] = pd.to_datetime(dates_df['date'])
list_of_vals.append(dates_df.groupby('name', as_index=False).apply(
lambda x: lower_tri(x_col=x.amount, date_col=x.date, win=180)))
new_data = flatten(list_of_vals)
dates_df['rolling_sales_180'] = new_data
print dates_df
Your time and feedback are appreciated.
Pandas has support for time-aware rolling via the rolling
method, so you can use that instead of writing your own solution from scratch:
def get_rolling_amount(grp, freq):
return grp.rolling(freq, on='date')['amount'].sum()
df['rolling_sales_180'] = df.groupby('name', as_index=False, group_keys=False) \
.apply(get_rolling_amount, '180D')
The resulting output:
name date amount rolling_sales_180
0 David 2015-01-01 100 100.0
1 David 2015-01-05 500 600.0
2 David 2015-05-30 50 650.0
3 David 2015-07-25 50 100.0
4 Ryan 2014-01-04 100 100.0
5 Ryan 2015-01-19 500 500.0
6 Ryan 2016-03-31 50 50.0
7 Joe 2015-07-01 100 100.0
8 Joe 2015-09-09 500 600.0
9 Joe 2015-10-15 50 650.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With