With Eager Execution enabled the TensorFlow square-root function tf.sqrt()
results in an InternalError
.
import tensorflow as tf
# enable eager execution
tf.enable_eager_execution()
> tf.pow(2,4)
'Out': <tf.Tensor: id=48, shape=(), dtype=int32, numpy=16>
> tf.sqrt(4)
>>> Traceback (most recent call last):
File "<ipython-input-21-5dc8e2f4780c>", line 1, in <module>
tf.sqrt(4)
File "/Users/ekababisong/anaconda3/envs/py36_dl/lib/python3.6/site-packages/
tensorflow/python/ops/math_ops.py", line 365, in sqrt
return gen_math_ops.sqrt(x, name=name)
File "/Users/ekababisong/anaconda3/envs/py36_dl/lib/python3.6/site-packages/
tensorflow/python/ops/gen_math_ops.py", line 7795, in sqrt
_six.raise_from(_core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
InternalError: Could not find valid device for node name: "Sqrt"
op: "Sqrt"
input: "dummy_input"
attr {
key: "T"
value {
type: DT_INT32
}
}
[Op:Sqrt] name: Sqrt/
I got a similar error when trying to pass an image through a convolutional filter. Turns out it was solved as P-Gn said, simply by convert it to float.
x = tf.cast(x, tf.float32)
Got a similar error when trying to find Nan Values in a dictionary, P-Gn's solution worked.
TF2.0 RC, Before (Internal Error : Could not find valid device for node) :
any(tf.math.is_nan(val) for val in dict.values())
After :
any(tf.math.is_nan(tf.cast(val, tf.float32) for val in dict.values())
Returns true / false
In this case that the value is just int it might be a good idea just to use numpy.
In case you still want to use TensorFlow it can be done like this:
tf.math.sqrt(tf.convert_to_tensor(4, dtype='float32'))
or
tf.sqrt(tf.convert_to_tensor(4, dtype='float32'))
tested on TensorFlow 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With