This is the question: codility.com/programmers/task/number_solitaire
and below link is my result (50% from Codility): https://codility.com/demo/results/training8AMJZH-RTA/
My code (at the first, I tried to solve this problem using Kadane's Algo):
class Solution {
public int solution(int[] A) {
int temp_max = Integer.MIN_VALUE;
int max = 0;
int k = 1;
if(A.length == 2) return A[0] + A[A.length-1];
for(int i = 1; i < A.length-1; i++) {
if(temp_max < A[i]) temp_max = A[i];
if(A[i] > 0) {
max += A[i];
temp_max = Integer.MIN_VALUE;
k = 0;
} else if(k % 6 == 0) {
max += temp_max;
temp_max = Integer.MIN_VALUE;
k = 0;
}
k++;
}
return A[0] + max + A[A.length-1];
}
And below is the solution (100% from Codility result) that I found from web:
class Solution {
public int solution(int[] A) {
int[] store = new int[A.length];
store[0] = A[0];
for (int i = 1; i < A.length; i++) {
store[i] = store[i-1];
for (int minus = 2; minus <= 6; minus++) {
if (i >= minus) {
store[i] = Math.max(store[i], store[i - minus]);
} else {
break;
}
}
store[i] += A[i];
}
return store[A.length - 1];
}
}
I have no idea what is the problem with my code:(
I tried several test cases but, nothing different with the solution & my code
but, codility test result shows mine is not perfectly correct. (https://codility.com/demo/results/training8AMJZH-RTA/)
please anyone explain me the problem with my code~~
Try this test case[-1, -2, -3, -4, -3, -8, -5, -2, -3, -4, -5, -6, -1]. you solution return -4 (A[0],A[1],A[length-1],Here is the mistake), but the correct answer is -6 (A[0],A[6],A[length-1]).
Here is a my solution,easy to understand:
public int solution(int[] A) {
int lens = A.length;
int dp[] = new int[6];
for (int i = 0; i < 6; i++) {
dp[i] = A[0];
}
for (int i = 1; i < lens; i++) {
dp[i%6] = getMax6(dp) + A[i];
}
return dp[(lens-1)%6];
}
private int getMax6(int dp[]){
int max = dp[0];
for (int i = 1; i < dp.length; i++) {
max = Math.max(max, dp[i]);
}
return max;
}
Readable solution from Java:
public class Solution {
public static void main(String[] args) {
System.out.println(new Solution().solution(new int[]{1, -2, 0, 9, -1, -2}));
}
private int solution(int[] A) {
int N = A.length;
int[] dp = new int[N];
dp[0] = A[0];
for (int i = 1; i < N; i++) {
double sm = Double.NEGATIVE_INFINITY;
for (int j = 1; j <= 6; j++) {
if (i - j < 0) {
break;
}
double s1 = dp[i - j] + A[i];
sm = Double.max(s1, sm);
}
dp[i] = (int) sm;
}
return dp[N-1];
}
}
Here is a solution similar to @0xAliHn but using less memory. You only need to remember the last 6 moves.
def NumberSolitaire(A):
dp = [0] * 6
dp[-1] = A[0]
for i in range(1, len(A)):
maxVal = -100001
for k in range(1, 7):
if i-k >= 0:
maxVal = max(maxVal, dp[-k] + A[i])
dp.append(maxVal)
dp.pop(0)
return dp[-1]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With