Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

dummy variables to single categorical variable (factor) in R

Tags:

r

factors

I have a set of variables coded as binomial.

   Pre VALUE_1 VALUE_2 VALUE_3 VALUE_4 VALUE_5 VALUE_6 VALUE_7 VALUE_8 
1   1       0       0       0       0       0       1       0       0       
2   1       0       0       0       0       1       0       0       0       
3   1       0       0       0       0       1       0       0       0       
4   1       0       0       0       0       1       0       0       0           

I would like to merge the variables (VALUE_1, VALUE_2...VALUE_8) into one single ordered factor, while conserving the column (Pre) as is, duch that the data would look like this:

  Pre VALUE
1  1  VALUE_6
2  1  VALUE_5
3  1  VALUE_5

Or even better:

  Pre VALUE
1  1  6
2  1  5
3  1  5

I am aware that this exists: Recoding dummy variable to ordered factor

But when I try the code used in that post, I receive the following error:

PA2$Factor = factor(apply(PA2, 1, function(x) which(x == 1)), labels = colnames(PA2)) 

Error in sort.list(y) : 'x' must be atomic for 'sort.list'
Have you called 'sort' on a list?

Any help would be appreciated

like image 732
Sky Avatar asked Apr 25 '15 21:04

Sky


People also ask

How do I convert dummy variables in R?

To convert category variables to dummy variables in tidyverse, use the spread() method. To do so, use the spread() function with three arguments: key, which is the column to convert into categorical values, in this case, “Reporting Airline”; value, which is the value you want to set the key to (in this case “dummy”);

How do you create a one factor variable in R?

To create a factor variable we use the factor function. The only required argument is a vector of values which can be either string or numeric.

Is dummy variable numeric or factor?

A dummy variable is a numerical variable that is used in a regression analysis to “code” for a binary categorical variable.


1 Answers

A quick solution would be something like

Res <- cbind(df[1], VALUE = factor(max.col(df[-1]), ordered = TRUE))
Res
#   Pre VALUE
# 1   1     6
# 2   1     5
# 3   1     5
# 4   1     5

str(Res)
# 'data.frame':  4 obs. of  2 variables:
# $ Pre  : int  1 1 1 1
# $ VALUE: Ord.factor w/ 2 levels "5"<"6": 2 1 1 1

OR if you want the actual names of the columns (as Pointed by @BondedDust), you can use the same methodology to extract them

factor(names(df)[1 + max.col(df[-1])], ordered = TRUE)
# [1] VALUE_6 VALUE_5 VALUE_5 VALUE_5
# Levels: VALUE_5 < VALUE_6

OR you can use your own which strategy in the following way (btw, which is vectorized so no need in using apply with a margin of 1 on it)

cbind(df[1], VALUE = factor(which(df[-1] == 1, arr.ind = TRUE)[, 2], ordered = TRUE))

OR you can do matrix multiplication (contributed by @akrun)

cbind(df[1], VALUE = factor(as.matrix(df[-1]) %*% seq_along(df[-1]), ordered = TRUE))
like image 51
David Arenburg Avatar answered Oct 11 '22 00:10

David Arenburg