i want to write a program that drops a column if it exceeds a specific number of NA values .This is what i did.
def check(x):
for column in df:
if df.column.isnull().sum() > 2:
df.drop(column,axis=1)
there is no error in executing the above code , but while doing df.apply(check)
, there are a ton of errors.
P.S:I know about the thresh arguement in df.dropna(thresh,axis)
Any tips?Why isnt my code working?
Thanks
Although jezrael's answer works that is not the approach you should do. Instead, create a mask: ~df.isnull().sum().gt(2)
and apply it with .loc[:,m]
to access columns.
Full example:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'A':list('abcdef'),
'B':[np.nan,np.nan,np.nan,5,5,np.nan],
'C':[np.nan,8,np.nan,np.nan,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,np.nan],
'F':list('aaabbb')
})
m = ~df.isnull().sum().gt(2)
df = df.loc[:,m]
print(df)
Returns:
A D E F
0 a 1 5.0 a
1 b 3 3.0 a
2 c 5 6.0 a
3 d 7 9.0 b
4 e 1 2.0 b
5 f 0 NaN b
Explanation
Assume we print the columns and the mask before applying it.
print(df.columns.tolist())
print(m.tolist())
It would return this:
['A', 'B', 'C', 'D', 'E', 'F']
[True, False, False, True, True, True]
Columns B and C are unwanted (False). They are removed when the mask is applied.
I think best here is use dropna
with parameter thresh
:
thresh : int, optional
Require that many non-NA values.
So for vectorize solution subtract it from length of DataFrame
:
N = 2
df = df.dropna(thresh=len(df)-N, axis=1)
print (df)
A D E F
0 a 1 5.0 a
1 b 3 3.0 a
2 c 5 6.0 a
3 d 7 9.0 b
4 e 1 2.0 b
5 f 0 NaN b
I suggest use DataFrame.pipe
for apply function for input DataFrame
with change df.column
to df[column]
, because dot notation with dynamic column names from variable failed (it try select column name column
):
df = pd.DataFrame({'A':list('abcdef'),
'B':[np.nan,np.nan,np.nan,5,5,np.nan],
'C':[np.nan,8,np.nan,np.nan,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,np.nan],
'F':list('aaabbb')})
print (df)
A B C D E F
0 a NaN NaN 1 5.0 a
1 b NaN 8.0 3 3.0 a
2 c NaN NaN 5 6.0 a
3 d 5.0 NaN 7 9.0 b
4 e 5.0 2.0 1 2.0 b
5 f NaN 3.0 0 NaN b
def check(df):
for column in df:
if df[column].isnull().sum() > 2:
df.drop(column,axis=1, inplace=True)
return df
print (df.pipe(check))
A D E F
0 a 1 5.0 a
1 b 3 3.0 a
2 c 5 6.0 a
3 d 7 9.0 b
4 e 1 2.0 b
5 f 0 NaN b
Alternatively, you can use count
which counts non-null values
In [23]: df.loc[:, df.count().gt(len(df.index) - 2)]
Out[23]:
A D E F
0 a 1 5.0 a
1 b 3 3.0 a
2 c 5 6.0 a
3 d 7 9.0 b
4 e 1 2.0 b
5 f 0 NaN b
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With