If I have a dataframe and want to drop any rows where the value in one column is not an integer how would I do this?
The alternative is to drop rows if value is not within a range 0-2 but since I am not sure how to do either of them I was hoping someonelse might.
Here is what I tried but it didn't work not sure why:
df = df[(df['entrytype'] != 0) | (df['entrytype'] !=1) | (df['entrytype'] != 2)].all(1)
Use pandas. DataFrame. drop() method to delete/remove rows with condition(s).
We can use the column_name function along with the operator to drop the specific value.
One of the fastest ways to delete rows that contain a specific value or fulfill a given condition is to filter these. Once you have the filtered data, you can delete all these rows (while the remaining rows remain intact).
There are 2 approaches I propose:
In [212]:
df = pd.DataFrame({'entrytype':[0,1,np.NaN, 'asdas',2]})
df
Out[212]:
entrytype
0 0
1 1
2 NaN
3 asdas
4 2
If the range of values is as restricted as you say then using isin
will be the fastest method:
In [216]:
df[df['entrytype'].isin([0,1,2])]
Out[216]:
entrytype
0 0
1 1
4 2
Otherwise we could cast to a str and then call .isdigit()
In [215]:
df[df['entrytype'].apply(lambda x: str(x).isdigit())]
Out[215]:
entrytype
0 0
1 1
4 2
str("-1").isdigit()
is False
str("-1").lstrip("-").isdigit()
works but is not nice.
df.loc[df['Feature'].str.match('^[+-]?\d+$')]
for your question the reverse set
df.loc[ ~(df['Feature'].str.match('^[+-]?\d+$')) ]
We have multiple ways to do the same, but I found this method easy and efficient.
#Using drop() to delete rows based on column value
df.drop(df[df['Fee'] >= 24000].index, inplace = True)
# Remove rows
df2 = df[df.Fee >= 24000]
# If you have space in column name
# Specify column name with in single quotes
df2 = df[df['column name']]
# Using loc
df2 = df.loc[df["Fee"] >= 24000 ]
# Delect rows based on multiple column value
df2 = df[ (df['Fee'] >= 22000) & (df['Discount'] == 2300)]
# Drop rows with None/NaN
df2 = df[df.Discount.notnull()]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With