I have a df that looks like this
   a     b      c
              c1  c2
0  87    33   32  34
1  32    10   45  62
2  78    83   99  71
I'd like to drop the c level but keep all the other column names
   a     b    c1  c2
0  87    33   32  34
1  32    10   45  62
2  78    83   99  71
df.columns = df.columns.droplevel(0) works but the names of a and b disappear
              c1  c2
0  87    33   32  34
1  32    10   45  62
2  78    83   99  71
                I think you can use set_index + droplevel + reset_index:
df = df.set_index(['a','b'])
df.columns = df.columns.droplevel(0)
df = df.reset_index()
print (df)
    a   b  c1  c2
0  87  33  32  34
1  32  10  45  62
2  78  83  99  71
Another solution with select columns by ['c']:
df = df.set_index(['a','b'])['c'].reset_index()
print (df)
    a   b  c1  c2
0  87  33  32  34
1  32  10  45  62
2  78  83  99  71
But if get it from pivot_table solution is remove [] or add parameter values='c' if missing.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With