Beginner Pandas Question:
That is, return a dataframe like:
Sector Ticker Price
0 Future NVID 350
1 Future NVID NaN
Dataframe Code:
import numpy as np
import pandas as pd
raw_data = {'Sector': [ 'Gas', 'Future', 'Future', 'Gas', 'Beer', 'Future'],
'Ticker': ['EX', 'NVID', 'ATVI', 'EX', 'BUSCH', 'NVID'],
'Price': [100, 350, 250, 500, 50, np.NaN]}
df = pd.DataFrame(raw_data, columns = ['Sector', 'Ticker', 'Price'])
print(df)
So Far I'm playing around with have:
new_df =df[ ~(df[TICKER] == 'NVIDA'):, ] OR
dummy_df=df.loc[:, ~(df == 'NVIDA')]
You are really close.
Use boolean indexing or query:
print(df['Ticker'] == 'NVID')
0 False
1 True
2 False
3 False
4 False
5 True
Name: Ticker, dtype: bool
new_df = df[df['Ticker'] == 'NVID']
print (new_df)
Sector Ticker Price
1 Future NVID 350.0
5 Future NVID NaN
new_df = df.query("Ticker == 'NVID'")
print (new_df)
Sector Ticker Price
1 Future NVID 350.0
5 Future NVID NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With