I've been searching for a while any answer to my question. I read this, this and this and some others related but I still get not answer.
My problem is quite simple (I hope it is) but the answer is not (at least for myself), I want to import some economic data from this web which is an indicator for Nicaraguan economic activity measured each month, so far I've tried this:
library(XML)
u <- "http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm"
u <- htmlParse(u,encoding="UTF-8")
imae <- readHTMLTable(doc=u, header=T)
imae
library(httr)
u2 <- "http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm"
page <- GET(u2, user_agent("httr"))
x <- readHTMLTable(text_content(page), as.data.frame=TRUE)
with no success as you can imagine. The first chunk of code gave me this output
$`NULL`
BANCO CENTRAL DE NICARAGUA NA NA NA NA NA NA NA NA NA NA NA NA NA
1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
2 <U+633C><U+3E64>ndice Mensual de Actividad Económica(IMAE) <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
3 (Base: 1994=100) <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
4 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
5 Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Promedio
6 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
7 1994 101.6 107.6 100.1 95.7 94.7 92.8 92.1 96.8 98.5 97.4 101.7 121.1 100.0
8 Fuente: BCN. <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
I tried using skip.rows=1:5
but it doesn't really change the main result which is too much NA
. Is there anybody who can shed some light on this question?
The expected result is a data.frame with the information shown in this web
To download data: Either go to the "Download IMF Data" tab, or, for some datasets, click on the top-right hand corner of a dataset portal. Click on the Bulk Download button located next to the dataset or the Bulk Download icon in some data portals.
Once you selected countries, indicators and years you can download the data to your computer by clicking on the Download button at the top of the screen. Select the format for your report (Excel, CSV, TXT, or SDMX) and click Download.
To access a specific WDI online table directly, use the URL http://wdi.worldbank.org/table/ and the table number (for example, http://wdi.worldbank.org/table/1.1 to view the first table in the Poverty and Shared Prosperity section). Each section of the book references the indicators included by table and by code.
As I mentioned in my comment, the problem is most likely arising because of the poorly coded table.
You can try an approach something like the following (tested on Ubuntu using RStudio). It requires that you have wget and html tidy installed. If you don't want to install these useful programs, jump to the updated part of this answer.
Download the page and "tidy" it up.
system("wget http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm")
system("tidy 4.IMAE.htm > new.html")
Proceed with R as you normally would
library(XML)
u <- htmlParse("new.html")
imae <- readHTMLTable(u)
If we view the output of the above readHTMLTable
, we would see that we need to skip a few rows. Let's run it again:
imae <- readHTMLTable(u, skip.rows=c(1:5, 7, 27, 28), header=TRUE)
imae
# $`NULL`
# Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Promedio
# 1 1994 101.6 107.6 100.1 95.7 94.7 92.8 92.1 96.8 98.5 97.4 101.7 121.1 100.0
# 2 1995 113.2 105.0 113.6 98.0 100.9 95.4 99.8 101.5 108.3 107.1 107.6 133.2 107.0
# 3 1996 123.6 116.0 109.1 107.3 94.8 101.2 100.7 115.3 110.6 112.7 117.5 137.7 112.2
# 4 1997 133.4 115.9 117.4 118.8 120.4 108.2 107.4 111.1 120.3 117.7 119.5 142.3 119.4
# 5 1998 131.4 120.4 127.9 118.4 130.2 116.5 122.1 129.7 127.3 127.5 112.7 156.6 126.7
# 6 1999 146.0 139.6 146.9 134.8 140.6 131.8 130.6 128.3 128.9 131.8 142.7 172.6 139.5
# 7 2000 157.8 142.1 147.3 138.5 137.7 135.7 128.9 131.2 141.7 143.0 156.6 191.2 146.0
# 8 2001 163.3 143.8 154.8 141.5 147.6 134.0 135.7 143.3 138.2 138.8 145.3 187.3 147.8
# 9 2002 152.1 144.7 143.3 142.1 143.1 131.9 136.1 145.7 146.4 147.8 157.5 185.0 148.0
# 10 2003 159.3 151.4 149.1 142.7 139.7 139.1 145.6 147.8 154.9 158.4 157.8 195.7 153.5
# 11 2004 172.8 157.1 166.9 153.6 161.2 150.5 155.3 153.3 156.6 155.6 167.7 213.0 163.6
# 12 2005 183.1 170.6 173.6 158.7 160.8 158.5 158.8 168.7 165.8 165.4 178.4 218.8 171.8
# 13 2006 187.7 177.8 185.6 161.8 166.4 163.2 164.7 175.1 175.1 185.3 189.6 231.2 180.3
# 14 2007 200.1 184.1 196.5 180.1 169.7 171.4 181.6 180.9 173.0 182.8 202.0 236.7 188.2
# 15 2008 205.4 194.4 193.1 205.9 171.0 174.8 181.3 190.7 183.1 182.7 182.5 244.7 192.5
# 16 2009 195.7 191.0 190.8 177.0 168.1 172.6 179.2 185.6 178.9 181.4 191.3 241.4 187.7
# 17 2010 195.2 193.7 205.1 185.2 179.3 190.1 191.6 190.0 193.5 197.6 210.9 266.0 199.8
# 18 2011 213.9 207.4 217.3 198.7 196.1 198.8 191.9 210.0 203.7 207.9 217.3 274.5 211.5
# 19 2012 233.6 233.6
If you can live with having to do some text cleanup for the accented characters, the W3C offers an online implementation of html tidy. This allows you to write a basic function like the following:
tidyHTML <- function(URL) {
require(XML)
URL = gsub("/", "%2F", URL)
URL <- gsub(":", "%3A", URL)
URL <- paste("http://services.w3.org/tidy/tidy?docAddr=", URL, sep = "")
htmlParse(URL)
}
Usage is simple:
u <- tidyHTML("http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm")
readHTMLTable(u)
This is a bit of a hack job which sort of works if the table is not well enough structured as in the other responses you linked to. But it is really more of a one-off that works if the format doesn't change, but beware--can be risky. There are likely more general solutions that folks can add.
require(RCurl)
require(XML)
u <- "http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm"
webpage <- getURL(u)
lines <- readLines(tc <- textConnection(webpage)); close(tc)
pagetree <- htmlTreeParse(lines, error=function(...){}, useInternalNodes = TRUE)
# parse tree by any tables
x <- xpathSApply(pagetree, "//*/table", xmlValue)
# remove white space and such w/ regexes
unlisted <- unlist(strsplit(x, "\n"))
notabs <- gsub("\t","",unlisted)
nowhitespace <- sub("^[[:space:]]*(.*?)[[:space:]]*$", "\\1", notabs, perl=TRUE)
data <- nowhitespace[!(nowhitespace %in% c("", "|"))]
here comes the dodgy part:
months<-data[5:16]
data_out<-data[18:(length(data)-4)] #omits 2012 data to easily fit structure argument
finalhack<-data.frame(t(structure(
data_out,dim = c(14,18),.Dimnames =
list(c('year',months,'index'),seq(1994,2011)))))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With