I need to plot a table in matplotlib. The problem is some columns have one-level headers, some columns have double-level headers.
Here's what I need:
Here's simple example for one-level headers:
df = pd.DataFrame()
df['Animal'] = ['Cow', 'Bear']
df['Weight'] = [250, 450]
df['Favorite'] = ['Grass', 'Honey']
df['Least Favorite'] = ['Meat', 'Leaves']
df
fig = plt.figure(figsize=(9,2))
ax=plt.subplot(111)
ax.axis('off')
table = ax.table(cellText=df.values, colColours=['grey']*df.shape[1], bbox=[0, 0, 1, 1], colLabels=df.columns)
plt.savefig('Table.jpg')
Last chunk of code produces next picture:
What changes do I need to make to have table I need?
You can merge the cells produced by ax.table
, a la the cell merge function in an Excel spreadsheet. This allows for a completely automated solution in which you don't need to fiddle with any coordinates (save for the indices of the cell you want to merge):
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame()
df['Animal'] = ['Cow', 'Bear']
df['Weight'] = [250, 450]
df['Favorite'] = ['Grass', 'Honey']
df['Least Favorite'] = ['Meat', 'Leaves']
fig = plt.figure(figsize=(9,2))
ax=fig.gca()
ax.axis('off')
r,c = df.shape
# ensure consistent background color
ax.table(cellColours=[['lightgray']] + [['none']], bbox=[0,0,1,1])
# plot the real table
table = ax.table(cellText=np.vstack([['', '', 'Food', ''], df.columns, df.values]),
cellColours=[['none']*c]*(2 + r), bbox=[0, 0, 1, 1])
# need to draw here so the text positions are calculated
fig.canvas.draw()
# do the 3 cell merges needed
mergecells(table, (1,0), (0,0))
mergecells(table, (1,1), (0,1))
mergecells(table, (0,2), (0,3))
Output:
Here's the code for the mergecells
function used above:
import matplotlib as mpl
def mergecells(table, ix0, ix1):
ix0,ix1 = np.asarray(ix0), np.asarray(ix1)
d = ix1 - ix0
if not (0 in d and 1 in np.abs(d)):
raise ValueError("ix0 and ix1 should be the indices of adjacent cells. ix0: %s, ix1: %s" % (ix0, ix1))
if d[0]==-1:
edges = ('BRL', 'TRL')
elif d[0]==1:
edges = ('TRL', 'BRL')
elif d[1]==-1:
edges = ('BTR', 'BTL')
else:
edges = ('BTL', 'BTR')
# hide the merged edges
for ix,e in zip((ix0, ix1), edges):
table[ix[0], ix[1]].visible_edges = e
txts = [table[ix[0], ix[1]].get_text() for ix in (ix0, ix1)]
tpos = [np.array(t.get_position()) for t in txts]
# center the text of the 0th cell between the two merged cells
trans = (tpos[1] - tpos[0])/2
if trans[0] > 0 and txts[0].get_ha() == 'right':
# reduce the transform distance in order to center the text
trans[0] /= 2
elif trans[0] < 0 and txts[0].get_ha() == 'right':
# increase the transform distance...
trans[0] *= 2
txts[0].set_transform(mpl.transforms.Affine2D().translate(*trans))
# hide the text in the 1st cell
txts[1].set_visible(False)
Yet another option would be to utilize matplotlib.gridspec.GridSpec
to plot values and columns using a custom layout:
def format_axes(fig):
for i, ax in enumerate(fig.axes):
ax.tick_params(labelbottom=False, labelleft=False, labelright=False)
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
df = pd.DataFrame()
df['Animal'] = ['Cow', 'Bear']
df['Weight'] = [250, 450]
df['Favorite'] = ['Grass', 'Honey']
df['Least Favorite'] = ['Meat', 'Leaves']
fig = plt.figure(figsize=(9, 2))
gs = GridSpec(3, 4, figure=fig, wspace=0.0, hspace=0.0,height_ratios=[1, 1, 4])
# plot table header
ax1 = fig.add_subplot(gs[:-1, 0])
ax1.text(0.5, 0.5, df.columns[0], va="center", ha="center")
ax2 = fig.add_subplot(gs[:-1, 1])
ax2.text(0.5, 0.5, df.columns[1], va="center", ha="center")
ax3 = fig.add_subplot(gs[0, -2:])
ax3.text(0.5, 0.5, "Food", va="center", ha="center")
ax4 = fig.add_subplot(gs[1, -2])
ax4.text(0.5, 0.5, df.columns[2], va="center", ha="center")
ax5 = fig.add_subplot(gs[1, -1])
ax5.text(0.5, 0.5, df.columns[3], va="center", ha="center")
# plot table data
ax6 = fig.add_subplot(gs[-1, :])
table = ax6.table(cellText=df.values, cellLoc='center', bbox=[0, 0, 1, 1])
format_axes(fig)
plt.show()
Result
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With