Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Does tensorflow-serving supports multi-threading?

I have some problem with using tensorflow serving.

I deployed my tensorflow model as RESTful APIs using tensorflow serving. But I doubt if tf-serving server supports multi-threading. I've done some experiments and it does not seem to be.

I also noticed that there is --tensorflow_session_parallelism option for tensorflow_model_server, but using the option makes my server more slow..

Is there any reference for using tensorflow serving with multi-threading?

like image 824
Junyeop Lee Avatar asked Dec 15 '17 04:12

Junyeop Lee


People also ask

Does TensorFlow use multiple threads?

TensorFlow Lite supports multi-threaded kernels for many operators. You can increase the number of threads and speed up execution of operators. Increasing the number of threads will, however, make your model use more resources and power. For some applications, latency may be more important than energy efficiency.

What does TensorFlow serving do?

TensorFlow Serving is a flexible, high-performance serving system for machine learning models, designed for production environments. TensorFlow Serving makes it easy to deploy new algorithms and experiments, while keeping the same server architecture and APIs.


1 Answers

Elaborating the content of the link provided by @ReInvent_IO, just in case if the link doesn't work in the future.

Code for the same is shown below:

"""A client that talks to tensorflow_model_server loaded with mnist model.
The client downloads test images of mnist data set, queries the service with
such test images to get predictions, and calculates the inference error rate.
Typical usage example:
    mnist_client.py --num_tests=100 --server=localhost:9000
"""

from __future__ import print_function

import sys
import threading

# This is a placeholder for a Google-internal import.

import grpc
import numpy
import tensorflow as tf

from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
import mnist_input_data

Setting the value of concurrency to 5 asking the server to run 5 different threads

tf.app.flags.DEFINE_integer('concurrency', 5,
                            'maximum number of concurrent inference requests')
tf.app.flags.DEFINE_integer('num_tests', 100, 'Number of test images')
tf.app.flags.DEFINE_string('server', '', 'PredictionService host:port')
tf.app.flags.DEFINE_string('work_dir', '/tmp', 'Working directory. ')
FLAGS = tf.app.flags.FLAGS


class _ResultCounter(object):
  """Counter for the prediction results."""

  def __init__(self, num_tests, concurrency):
    self._num_tests = num_tests
    self._concurrency = concurrency
    self._error = 0
    self._done = 0
    self._active = 0
    self._condition = threading.Condition()

  def inc_error(self):
    with self._condition:
      self._error += 1

  def inc_done(self):
    with self._condition:
      self._done += 1
      self._condition.notify()

  def dec_active(self):
    with self._condition:
      self._active -= 1
      self._condition.notify()

  def get_error_rate(self):
    with self._condition:
      while self._done != self._num_tests:
        self._condition.wait()
      return self._error / float(self._num_tests)

  def throttle(self):
    with self._condition:
      while self._active == self._concurrency:
        self._condition.wait()
      self._active += 1


def _create_rpc_callback(label, result_counter):
  """Creates RPC callback function.
  Args:
    label: The correct label for the predicted example.
    result_counter: Counter for the prediction result.
  Returns:
    The callback function.
  """
  def _callback(result_future):
    """Callback function.
    Calculates the statistics for the prediction result.
    Args:
      result_future: Result future of the RPC.
    """
    exception = result_future.exception()
    if exception:
      result_counter.inc_error()
      print(exception)
    else:
      sys.stdout.write('.')
      sys.stdout.flush()
      response = numpy.array(
          result_future.result().outputs['scores'].float_val)
      prediction = numpy.argmax(response)
      if label != prediction:
        result_counter.inc_error()
    result_counter.inc_done()
    result_counter.dec_active()
  return _callback


def do_inference(hostport, work_dir, concurrency, num_tests):
  """Tests PredictionService with concurrent requests.
  Args:
    hostport: Host:port address of the PredictionService.
    work_dir: The full path of working directory for test data set.
    concurrency: Maximum number of concurrent requests.
    num_tests: Number of test images to use.
  Returns:
    The classification error rate.
  Raises:
    IOError: An error occurred processing test data set.
  """
  test_data_set = mnist_input_data.read_data_sets(work_dir).test
  channel = grpc.insecure_channel(hostport)
  stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
  result_counter = _ResultCounter(num_tests, concurrency)
  for _ in range(num_tests):
    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'mnist'
    request.model_spec.signature_name = 'predict_images'
    image, label = test_data_set.next_batch(1)
    request.inputs['images'].CopyFrom(
        tf.contrib.util.make_tensor_proto(image[0], shape=[1, image[0].size]))
    result_counter.throttle()
    result_future = stub.Predict.future(request, 5.0)  # 5 seconds
    result_future.add_done_callback(
        _create_rpc_callback(label[0], result_counter))
  return result_counter.get_error_rate()


def main(_):
  if FLAGS.num_tests > 10000:
    print('num_tests should not be greater than 10k')
    return
  if not FLAGS.server:
    print('please specify server host:port')
    return
  error_rate = do_inference(FLAGS.server, FLAGS.work_dir,
                            FLAGS.concurrency, FLAGS.num_tests)
  print('\nInference error rate: %s%%' % (error_rate * 100))


if __name__ == '__main__':
  tf.app.run()
like image 159
RakTheGeek Avatar answered Sep 18 '22 15:09

RakTheGeek