I posted a question earlier asking why does my server (written in C++ and boost::asio
) can't connect with a client (written in Javascript). Is the problem that the Javascript Websockets are different than boost::asio
sockets ? Does boost::asio
not support websockets ? What is the easiest way to work this out ?
WebSocket communication can take successfully take place in the presence of forward proxies, providing the client and proxy server have been configured properly to deal with it. This page explains how to configure a Universal Messaging JavaScript client and Apache serving as a forward proxy to permit WebSocket use.
Websockets are largely obsolete because nowadays, if you create a HTTP/2 fetch request, any existing keepalive connection to that server is used, so the overhead that pre-HTTP/2 XHR connections needed is lost and with it the advantage of Websockets.
WebTransport is a new specification offering an alternative to WebSockets. For applications that need low-latency, event-driven communication between endpoints, WebSockets has been the go-to choice, but WebTransport may change that.
Azure Load balancer does not support WebSockets. You can consider using Application Gateway as it natively supports WebSockets.
Boost.Beast, now part of Boost, is built on top of Boost.Asio and works the way you expect. It comes with example code and documentation. Check it out here: www.boost.org/libs/beast
Here's a complete program that sends a message to the echo server:
#include <boost/beast/core.hpp>
#include <boost/beast/websocket.hpp>
#include <boost/asio/connect.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <cstdlib>
#include <iostream>
#include <string>
namespace beast = boost::beast; // from <boost/beast.hpp>
namespace http = beast::http; // from <boost/beast/http.hpp>
namespace websocket = beast::websocket; // from <boost/beast/websocket.hpp>
namespace net = boost::asio; // from <boost/asio.hpp>
using tcp = boost::asio::ip::tcp; // from <boost/asio/ip/tcp.hpp>
// Sends a WebSocket message and prints the response
int main(int argc, char** argv)
{
try
{
// Check command line arguments.
if(argc != 4)
{
std::cerr <<
"Usage: websocket-client-sync <host> <port> <text>\n" <<
"Example:\n" <<
" websocket-client-sync echo.websocket.org 80 \"Hello, world!\"\n";
return EXIT_FAILURE;
}
std::string host = argv[1];
auto const port = argv[2];
auto const text = argv[3];
// The io_context is required for all I/O
net::io_context ioc;
// These objects perform our I/O
tcp::resolver resolver{ioc};
websocket::stream<tcp::socket> ws{ioc};
// Look up the domain name
auto const results = resolver.resolve(host, port);
// Make the connection on the IP address we get from a lookup
auto ep = net::connect(ws.next_layer(), results);
// Update the host_ string. This will provide the value of the
// Host HTTP header during the WebSocket handshake.
// See https://tools.ietf.org/html/rfc7230#section-5.4
host += ':' + std::to_string(ep.port());
// Set a decorator to change the User-Agent of the handshake
ws.set_option(websocket::stream_base::decorator(
[](websocket::request_type& req)
{
req.set(http::field::user_agent,
std::string(BOOST_BEAST_VERSION_STRING) +
" websocket-client-coro");
}));
// Perform the websocket handshake
ws.handshake(host, "/");
// Send the message
ws.write(net::buffer(std::string(text)));
// This buffer will hold the incoming message
beast::flat_buffer buffer;
// Read a message into our buffer
ws.read(buffer);
// Close the WebSocket connection
ws.close(websocket::close_code::normal);
// If we get here then the connection is closed gracefully
// The make_printable() function helps print a ConstBufferSequence
std::cout << beast::make_printable(buffer.data()) << std::endl;
}
catch(std::exception const& e)
{
std::cerr << "Error: " << e.what() << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With