I have PDFs and CDFs for two custom distributions, a means of generating RandomVariates for each, and code for fitting parameters to data. Some of this code I've posted previously at:
Calculating expectation for a custom distribution in Mathematica
Some of it follows:
nlDist /: PDF[nlDist[alpha_, beta_, mu_, sigma_],
x_] := (1/(2*(alpha + beta)))*alpha*
beta*(E^(alpha*(mu + (alpha*sigma^2)/2 - x))*
Erfc[(mu + alpha*sigma^2 - x)/(Sqrt[2]*sigma)] +
E^(beta*(-mu + (beta*sigma^2)/2 + x))*
Erfc[(-mu + beta*sigma^2 + x)/(Sqrt[2]*sigma)]);
nlDist /:
CDF[nlDist[alpha_, beta_, mu_, sigma_],
x_] := ((1/(2*(alpha + beta)))*((alpha + beta)*E^(alpha*x)*
Erfc[(mu - x)/(Sqrt[2]*sigma)] -
beta*E^(alpha*mu + (alpha^2*sigma^2)/2)*
Erfc[(mu + alpha*sigma^2 - x)/(Sqrt[2]*sigma)] +
alpha*E^((-beta)*mu + (beta^2*sigma^2)/2 + alpha*x + beta*x)*
Erfc[(-mu + beta*sigma^2 + x)/(Sqrt[2]*sigma)]))/
E^(alpha*x);
dplDist /: PDF[dplDist[alpha_, beta_, mu_, sigma_], x_] :=
PDF[nlDist[alpha, beta, mu, sigma], Log[x]]/x;
dplDist /: CDF[dplDist[alpha_, beta_, mu_, sigma_], x_] :=
CDF[nlDist[alpha, beta, mu, sigma], Log[x]];
nlDist /: DistributionDomain[nlDist[alpha_, beta_, mu_, sigma_]] :=
Interval[{-Infinity, Infinity}]
nlDist /:
Random`DistributionVector[
nlDist [alpha_, beta_, mu_, sigma_], n_, prec_] :=
RandomVariate[ExponentialDistribution[alpha], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[beta], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[mu, sigma], n,
WorkingPrecision -> prec];
dplDist /:
Random`DistributionVector[
dplDist[alpha_, beta_, mu_, sigma_], n_, prec_] :=
Exp[RandomVariate[ExponentialDistribution[alpha], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[beta], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[mu, sigma], n,
WorkingPrecision -> prec]];
I can post more of the code if someone needs to see it, but I think the above gives a good sense of the approach so far.
Now I need a way to use DistributionFitTest[] with these distributions in something like this:
DistributionFitTest[data, dplDist[3.77, 1.34, -2.65, 0.40],"HypothesisTestData"]
Ah, but this doesn't work. Instead I get an error message that starts out as:
"The argument dplDist[3.77,1.34,-2.65,0.4] should be a valid distribution..."
So it appears that DistributionFitTest[] doesn't recognize these distributions as distributions.
I don't see how using TagSet would help in this instance, unless one can use TagSet to give DistributionFitTest[] what it needs to identify these custom distributions.
Can anyone advise me of a way to get this to work? I'd like to use DistributionFitTest[] with custom distributions like this or find some work around to assess goodness of fit.
Thx -- Jagra
Since this question has come up many times, I think it's prime time to furnish some recipes for how to properly cook a custom distribution for v8.
Use TagSet
to define for your distribution:
DistributionParameterQ
, DistributionParameterAssumptions
, DistributionDomain
PDF
, CDF
, SurvivalFunction
, HazardFunction
Doing so will make everything but parameter estimation work for your distribution.
Your mistake was that dplDist
had no DistributionDomain
definition, and both nlDist
and dplDist
did not have
DistributionParameterQ
and DistributionParameterAssumptions
definitions.
I added to your definitions the following:
dplDist /: DistributionDomain[dplDist[alpha_, beta_, mu_, sigma_]] :=
Interval[{-Infinity, Infinity}]
nlDist /:
DistributionParameterQ[nlDist[alpha_, beta_, mu_, sigma_]] := !
TrueQ[Not[
Element[{alpha, beta, sigma, mu}, Reals] && alpha > 0 &&
beta > 0 && sigma > 0]]
dplDist /:
DistributionParameterQ[dplDist[alpha_, beta_, mu_, sigma_]] := !
TrueQ[Not[
Element[{alpha, beta, sigma, mu}, Reals] && alpha > 0 &&
beta > 0 && sigma > 0]]
nlDist /:
DistributionParameterAssumptions[
nlDist[alpha_, beta_, mu_, sigma_]] :=
Element[{alpha, beta, sigma, mu}, Reals] && alpha > 0 && beta > 0 &&
sigma > 0
dplDist /:
DistributionParameterAssumptions[
dplDist[alpha_, beta_, mu_, sigma_]] :=
Element[{alpha, beta, sigma, mu}, Reals] && alpha > 0 && beta > 0 &&
sigma > 0
And now it worked:
In[1014]:= data = RandomVariate[dplDist[3.77, 1.34, -2.65, 0.40], 100];
In[1015]:= DistributionFitTest[data, dplDist[3.77, 1.34, -2.65, 0.40],
"HypothesisTestData"]
Out[1015]= HypothesisTestData[<<DistributionFitTest>>]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With