Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Discrete Wavelet Transform integer Daub 5/3 lifting issue

Tags:

c++

wavelet

dwt

I'm trying to run an integer-to-integer lifting 5/3 on an image of lena. I've been following the paper "A low-power Low-memory system for wavelet-based image compression" by Walker, Nguyen, and Chen (Link active as of 7 Oct 2015).

I'm running into issues though. The image just doesn't seem to come out quite right. I appear to be overflowing slightly in the green and blue channels which means that subsequent passes of the wavelet function find high frequencies where there ought not to be any. I'm also pretty sure I'm getting something else wrong as I am seeing a line of the s0 image at the edges of the high frequency parts.

My function is as follows:

bool PerformHorizontal( Col24* pPixelsIn, Col24* pPixelsOut, int width, int pixelPitch, int height )
{
    const int widthDiv2 = width / 2;
    int y   = 0;
    while( y < height )
    {
        int x = 0;
        while( x < width )
        {
            const int n     = (x)       + (y * pixelPitch);
            const int n2    = (x / 2)   + (y * pixelPitch);

            const int s     = n2;
            const int d     = n2 + widthDiv2;

            // Non-lifting 5 / 3
            /*pPixelsOut[n2 + widthDiv2].r  = pPixelsIn[n + 2].r - ((pPixelsIn[n + 1].r + pPixelsIn[n + 3].r) / 2) + 128;
            pPixelsOut[n2].r                = ((4 * pPixelsIn[n + 2].r) + (2 * pPixelsIn[n + 2].r) + (2 * (pPixelsIn[n + 1].r + pPixelsIn[n + 3].r)) - (pPixelsIn[n + 0].r + pPixelsIn[n + 4].r)) / 8;

            pPixelsOut[n2   + widthDiv2].g  = pPixelsIn[n + 2].g - ((pPixelsIn[n + 1].g + pPixelsIn[n + 3].g) / 2) + 128;
            pPixelsOut[n2].g                = ((4 * pPixelsIn[n + 2].g) + (2 * pPixelsIn[n + 2].g) + (2 * (pPixelsIn[n + 1].g + pPixelsIn[n + 3].g)) - (pPixelsIn[n + 0].g + pPixelsIn[n + 4].g)) / 8;

            pPixelsOut[n2   + widthDiv2].b  = pPixelsIn[n + 2].b - ((pPixelsIn[n + 1].b + pPixelsIn[n + 3].b) / 2) + 128;
            pPixelsOut[n2].b                = ((4 * pPixelsIn[n + 2].b) + (2 * pPixelsIn[n + 2].b) + (2 * (pPixelsIn[n + 1].b + pPixelsIn[n + 3].b)) - (pPixelsIn[n + 0].b + pPixelsIn[n + 4].b)) / 8;*/

            pPixelsOut[d].r = pPixelsIn[n + 1].r    - (((pPixelsIn[n].r         + pPixelsIn[n + 2].r)   >> 1) + 127);
            pPixelsOut[s].r = pPixelsIn[n].r        + (((pPixelsOut[d - 1].r    + pPixelsOut[d].r)      >> 2) - 64);

            pPixelsOut[d].g = pPixelsIn[n + 1].g    - (((pPixelsIn[n].g         + pPixelsIn[n + 2].g)   >> 1) + 127);
            pPixelsOut[s].g = pPixelsIn[n].g        + (((pPixelsOut[d - 1].g    + pPixelsOut[d].g)      >> 2) - 64);

            pPixelsOut[d].b = pPixelsIn[n + 1].b    - (((pPixelsIn[n].b         + pPixelsIn[n + 2].b)   >> 1) + 127);
            pPixelsOut[s].b = pPixelsIn[n].b        + (((pPixelsOut[d - 1].b    + pPixelsOut[d].b)      >> 2) - 64);

            x += 2;
        }
        y++;
    }
    return true;
}

There is definitely something wrong but I just can't figure it out. Can anyone with slightly more brain than me point out where I am going wrong? Its worth noting that you can see the un-lifted version of the Daub 5/3 above the working code and this, too, give me the same artifacts ... I'm very confused as I have had this working once before (It was over 2 years ago and I no longer have that code).

Any help would be much appreciated :)

Edit: I appear to have eliminated my overflow issues by clamping the low pass pixels to the 0 to 255 range. I'm slightly concerned this isn't the right solution though. Can anyone comment on this?

like image 414
Goz Avatar asked Nov 14 '22 13:11

Goz


1 Answers

You can do some tests with extreme values to see the possibility of overflow. Example:

  pPixelsOut[d].r = pPixelsIn[n + 1].r - (((pPixelsIn[n].r  + pPixelsIn[n + 2].r) >> 1) + 127);

If:
  pPixelsIn[n  ].r == 255
  pPixelsIn[n+1].r == 0
  pPixelsIn[n+2].r == 255

Then:
  pPixelsOut[d].r == -382


But if:
  pPixelsIn[n  ].r == 0
  pPixelsIn[n+1].r == 255
  pPixelsIn[n+2].r == 0

Then:
  pPixelsOut[d].r == 128

You have a range of 511 possible values (-382 .. 128), so, in order to avoid overflow or clamping, you would need one extra bit, some quantization, or another encoding type!

like image 125
e.tadeu Avatar answered Dec 19 '22 08:12

e.tadeu