I need some help implementing Dijkstra's Algorithm and was hoping someone would be able to assist me. I have it so that it is printing some of routes but it isn't capturing the correct costs for the path.
Here is my node structure:
class Node
{
public enum Color {White, Gray, Black};
public string Name { get; set; } //city
public List<NeighborNode> Neighbors { get; set; } //Connected Edges
public Color nodeColor = Color.White;
public int timeDiscover { get; set; }//discover time
public int timeFinish { get; set; } // finish time
public Node()
{
Neighbors = new List<NeighborNode>();
}
public Node(string n, int discover)
{
Neighbors = new List<NeighborNode>();
this.Name = n;
timeDiscover = discover;
}
public Node(string n, NeighborNode e, decimal m)
{
Neighbors = new List<NeighborNode>();
this.Name = n;
this.Neighbors.Add(e);
}
}
class NeighborNode
{
public Node Name { get; set; }
public decimal Miles { get; set; } //Track the miles on the neighbor node
public NeighborNode() { }
public NeighborNode(Node n, decimal m)
{
Name = n;
Miles = m;
}
}
Here is my algorithm:
public void DijkstraAlgorithm(List<Node> graph)
{
List<DA> _algorithmList = new List<DA>(); //track the node cost/positioning
Stack<Node> _allCities = new Stack<Node>(); // add all cities into this for examination
Node _nodeToExamine = new Node(); //this is the node we're currently looking at.
decimal _cost = 0;
foreach (var city in graph) // putting these onto a stack for easy manipulation. Probably could have just made this a stack to start
{
_allCities.Push(city);
_algorithmList.Add(new DA(city));
}
_nodeToExamine = _allCities.Pop(); //pop off the first node
while (_allCities.Count != 0) // loop through each city
{
foreach (var neighbor in _nodeToExamine.Neighbors) //loop through each neighbor of the node
{
for (int i = 0; i < _algorithmList.Count; i++) //search the alorithm list for the current neighbor node
{
if (_algorithmList[i].Name.Name == neighbor.Name.Name) //found it
{
for (int j = 0; j < _algorithmList.Count; j++) //check for the cost of the parent node
{
if (_algorithmList[j].Name.Name == _nodeToExamine.Name) //looping through
{
if (_algorithmList[j].Cost != 100000000) //not infinity
_cost = _algorithmList[j].Cost; //set the cost to be the parent cost
break;
}
}
_cost = _cost + neighbor.Miles;
if (_algorithmList[i].Cost > _cost) // check to make sure the miles are less (better path)
{
_algorithmList[i].Parent = _nodeToExamine; //set the parent to be the top node
_algorithmList[i].Cost = _cost; // set the weight to be correct
break;
}
}
}
}
_cost = 0;
_nodeToExamine = _allCities.Pop();
}
}
This is what the graph looks like:
The graph list node is essentially
Node -- Neighbor Nodes
So for example:
Node = Olympia, Neighbor Nodes = Lacey and Tacoma
I think the problem is that
_cost = _algorithmList[j].Cost; //set the cost to be the parent cost
You do a direct assignment of cost, instead of an addition of old and new cost.
Also, the fact that you do
if (_algorithmList[j].Cost != 100000000) //not infinity
directly before it means that if the cost of the path is infinity, you do the very opposite - you add zero to the cost of the path, making it the least expensive instead of most expensive path.
If you want to check for infinity properly, you have to outright skip taking that path when you inspect its cost, not just skip calculating the cost.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With