My understanding is that (one use of) numpy's vectorize allows me to send an array to a function that normally only takes scalars, instead of using the built in map function (in combination with a lambda function or the like). However, under the following scenario I am getting different results when I use map vs numpy.vectorize and I can't seem to figure out why.
import numpy as np
def basis2(dim, k, x):
y = np.array([-0.2, -0.13, -0.06, 0, 0.02, 0.06, 0.15, 0.3, 0.8,
1.6, 3.1, 6.1, 10.1, 15.1, 23.1, 30.1, 35.0, 40.0, 45.0, 50.0, 55.0])
if x < y[k] or x > y[k + dim + 1]:
return 0
elif dim != 0:
ret = ((x - y[k]) / (y[k + dim] - y[k])) * basis2(dim - 1, k, x) + (
(y[k + dim + 1] - x) / (y[k + dim + 1] - y[k + 1])) * basis2(dim - 1, k + 1, x)
return ret
else:
return 1.0
w = np.array([20.0, 23.1, 30.0])
func = lambda x: basis2(3, 14, x)
vec = map(func, w)
func2 = np.vectorize(basis2)
vec2 = func2(3, 14, w)
print vec # = [0, 0.0, 0.23335417007039491]
print vec2 # = [0 0 0]
As the docstring says:
The data type of the output of vectorized
is determined by calling
the function with the first element of the input. This can be avoided
by specifying the otypes
argument.
you need to add a otypes
argument:
func2 = np.vectorize(basis2, otypes="d")
or change return 0
to return 0.0
in basis2()
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With