For this reason, neither numpy. random nor random. random is suitable for any serious cryptographic uses. But because the sequence is so very very long, both are fine for generating random numbers in cases where you aren't worried about people trying to reverse-engineer your data.
The only difference is in how the arguments are handled. With numpy. random. rand , the length of each dimension of the output array is a separate argument.
random. random() gives you a random floating point number in the range [0.0, 1.0) (so including 0.0 , but not including 1.0 which is also known as a semi-open range). random. uniform(a, b) gives you a random floating point number in the range [a, b] , (where rounding may end up giving you b ).
np. random could be slower for one value, but faster if asked to provide thousands.
You have made many correct observations already!
Unless you'd like to seed both of the random generators, it's probably simpler in the long run to choose one generator or the other. But if you do need to use both, then yes, you'll also need to seed them both, because they generate random numbers independently of each other.
For numpy.random.seed()
, the main difficulty is that it is not thread-safe - that is, it's not safe to use if you have many different threads of execution, because it's not guaranteed to work if two different threads are executing the function at the same time. If you're not using threads, and if you can reasonably expect that you won't need to rewrite your program this way in the future, numpy.random.seed()
should be fine. If there's any reason to suspect that you may need threads in the future, it's much safer in the long run to do as suggested, and to make a local instance of the numpy.random.Random
class. As far as I can tell, random.random.seed()
is thread-safe (or at least, I haven't found any evidence to the contrary).
The numpy.random
library contains a few extra probability distributions commonly used in scientific research, as well as a couple of convenience functions for generating arrays of random data. The random.random
library is a little more lightweight, and should be fine if you're not doing scientific research or other kinds of work in statistics.
Otherwise, they both use the Mersenne twister sequence to generate their random numbers, and they're both completely deterministic - that is, if you know a few key bits of information, it's possible to predict with absolute certainty what number will come next. For this reason, neither numpy.random nor random.random is suitable for any serious cryptographic uses. But because the sequence is so very very long, both are fine for generating random numbers in cases where you aren't worried about people trying to reverse-engineer your data. This is also the reason for the necessity to seed the random value - if you start in the same place each time, you'll always get the same sequence of random numbers!
As a side note, if you do need cryptographic level randomness, you should use the secrets module, or something like Crypto.Random if you're using a Python version earlier than Python 3.6.
From Python for Data Analysis, the module numpy.random
supplements the Python random
with functions for efficiently generating whole arrays of sample values from many kinds of probability distributions.
By contrast, Python's built-in random
module only samples one value at a time, while numpy.random
can generate very large sample faster. Using IPython magic function %timeit
one can see which module performs faster:
In [1]: from random import normalvariate
In [2]: N = 1000000
In [3]: %timeit samples = [normalvariate(0, 1) for _ in xrange(N)]
1 loop, best of 3: 963 ms per loop
In [4]: %timeit np.random.normal(size=N)
10 loops, best of 3: 38.5 ms per loop
The source of the seed and the distribution profile used are going to affect the outputs - if you are looking for cryptgraphic randomness, seeding from os.urandom() will get nearly real random bytes from device chatter (ie ethernet or disk) (ie /dev/random on BSD)
this will avoid you giving a seed and so generating determinisitic random numbers. However the random calls then allow you to fit the numbers to a distribution (what I call scientific random ness - eventually all you want is a bell curve distribution of random numbers, numpy is best at delviering this.
SO yes, stick with one generator, but decide what random you want - random, but defitniely from a distrubtuion curve, or as random as you can get without a quantum device.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With