What is the difference between Principal Component Analysis (PCA) and Feature Selection in Machine Learning? Is PCA a means of feature selection?
A feature selection method is proposed to select a subset of variables in principal component analysis (PCA) that preserves as much information present in the complete data as possible. The information is measured by means of the percentage of consensus in generalised Procrustes analysis.
Perhaps the most popular technique for dimensionality reduction in machine learning is Principal Component Analysis, or PCA for short. This is a technique that comes from the field of linear algebra and can be used as a data preparation technique to create a projection of a dataset prior to fitting a model.
Anyways, the correct answer should be: it depends. Typically a Feature Selection step comes after the PCA (with a optimization parameter describing the number of features and Scaling comes before PCA. However, depending on the problem this my change. You might want to apply PCA only on a subset of features.
Feature Selection vs Dimensionality ReductionFeature selection is simply selecting and excluding given features without changing them. Dimensionality reduction transforms features into a lower dimension.
PCA is a way of finding out which features are important for best describing the variance in a data set. It's most often used for reducing the dimensionality of a large data set so that it becomes more practical to apply machine learning where the original data are inherently high dimensional (e.g. image recognition).
PCA has limitations though, because it relies on linear relationships between feature elements and it's often unclear what the relationships are before you start. As it also "hides" feature elements that contribute little to the variance in the data, it can sometimes eradicate a small but significant differentiator that would affect the performance of a machine learning model.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With