I have some problems regarding the rolling_std function of pandas.stats.moments. Strangely I get different results using this functionality compared to the numpy.std function applied to a rolling window over an array.
here is the code to reproduce this error:
# import the modules
import numpy as np
import pandas as pd
# define timeseries and sliding window size
timeseries = np.arange(10)
periods = 4
# output of different results
pd.stats.moments.rolling_std(timeseries, periods)
[np.std(timeseries[max(i-periods+1,0):i+1]) for i in np.arange(10)]
Yielding:
#pandas
array([ nan, nan, nan, 1.29099445, 1.29099445,
1.29099445, 1.29099445, 1.29099445, 1.29099445, 1.29099445])
#numpy
[0.0, 0.5, 0.81649658092772603, 1.1180339887498949, 1.1180339887498949, 1.1180339887498949, 1.1180339887498949, 1.1180339887498949, 1.1180339887498949, 1.1180339887498949]
If I calculate this by hand the numpy results seems to be correct. Has anyone encountered this before or has an explanation?
Pandas' rolling_std
is computed using default delta degrees of freedom, ddof
, equal to 1, being more like R in that aspect. While default ddof for numpy's std is 0. You will get the equivalent results while specifying ddof=1
for np.std
>>> [np.std(timeseries[max(i-periods+1,0):i+1], ddof=1) for i in np.arange(10)]
[nan, 0.70710678118654757, 1.0, 1.2909944487358056, 1.2909944487358056, 1.2909944487358056, 1.2909944487358056, 1.29099444873580
56, 1.2909944487358056, 1.2909944487358056]
Or ddof=0
for rolling_std
:
>>> pd.stats.moments.rolling_std(timeseries, periods, ddof=0)
array([ nan, nan, nan, 1.11803399, 1.11803399,
1.11803399, 1.11803399, 1.11803399, 1.11803399, 1.11803399])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With