I'm hoping the community can clarify something for me, and that others can benefit.
My understanding is that gunicorn worker processes are essentially virtual replicas of Heroku web dynos. In other words, Gunicorn's worker processes should not be confused with Heroku's worker processes (e.g. Django Celery Tasks).
This is because Gunicorn worker processes are focused on handling web requests (basically throttling up the performance of the Heroku Web Dyno) while Heroku Worker Dynos specialize in Remote API calls, etc that are long-running background tasks.
I have a simple Django app that makes decent use of Remote APIs and I want to optimize the resource balance. I am also querying a PostgreSQL database on most requests.
I know that this is very much an oversimplification, but am I thinking about things correctly?
Some relevant info:
https://devcenter.heroku.com/articles/process-model
https://devcenter.heroku.com/articles/background-jobs-queueing
https://devcenter.heroku.com/articles/django#running-a-worker
http://gunicorn.org/configure.html#workers
http://v3.mike.tig.as/blog/2012/02/13/deploying-django-on-heroku/
https://docs.djangoproject.com/en/dev/howto/deployment/wsgi/gunicorn/
Other Quasi-Related Helpful SO Questions for those researching this topic:
Troubleshooting Site Slowness on a Nginx + Gunicorn + Django Stack
Performance degradation for Django with Gunicorn deployed into Heroku
Configuring gunicorn for Django on Heroku
Troubleshooting Site Slowness on a Nginx + Gunicorn + Django Stack
To provide an answer and prevent people from having to search through the comments, a dyno is like an entire computer. Using the Procfile, you give each of your dynos one command to run, and it cranks away on that command, re-running it periodically to refresh it and re-running it when it crashes. As you can imagine, it's rather wasteful to waste an entire computer running a single-threaded webserver, and that's where Gunicorn comes in.
The Gunicorn master thread does nothing but act as a proxy server, spawning a given number of copies of your application (workers), distributing HTTP requests amongst them. It takes advantage of the fact that each dyno actually has multiple cores. As someone mentioned, the number of workers you should choose depends on how much memory your app takes to run.
Contrary to what Bob Spryn said in the last comment, there are other ways of exploiting this opportunity for parallelism to run separate servers on the same dyno. The easiest way is to make a separate sub-procfile and run the all-Python Foreman equivalent, Honcho, from your main Procfile, following these directions. Essentially, in this case your single dyno command is a program that manages multiple single commands. It's kind of like being granted one wish from a genie, and making that wish be for 4 more wishes.
The advantage of this is you get to take full advantage of your dynos' capacity. The disadvantage of this approach is that you lose the ability scale individual parts of your app independently when they're sharing a dyno. When you scale the dyno, it will scale everything you've multiplexed onto it, which may not be desired. You will probably have to use diagnostics to decide when a service should be put on its own dedicated dyno.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With