Are there any methods in the computer vision literature that allows for detecting transparent glass in images? Like if I have an image of a car, can I detect windows? etc...
All methods I've found so far are active methods (i.e. require calibration, control over the environment or lasers). I need a passive method (i.e. all you have is an image, or multi-view images of the object and thats it).
Here is some very recent work aimed at detecting transparent objects in a general setting.
http://books.nips.cc/papers/files/nips22/NIPS2009_0397.pdf
http://videolectures.net/nips09_fritz_alfm/
I think what you looking for is detection of translucent regions. There is very limited work here since it is a very hard problem. Basically it is a major chicken and egg problem. Translucent regions cause almost all fundamental image processing tools to fail (e.g. motion estimation, feature matching, tracking, etc...). Yet you must use such tools to detect translucent regions. Anyway, up to my knowledge this is the most recent piece of work in this area and I doubt there is any other.
http://www.mee.tcd.ie/~sigmedia/pmwiki/uploads/Misc.Icip2011/CVPR_new.pdf
It is published in CVPR which is a top conference in Computer Vision.
Just a wild guess: if the camera is moving and you perform a 3D reconstruction of the scene, you could detect large discontinuities of the reconstructions at the reflected regions.
I think you should provide a clearer description of what your are trying to achieve.
The paper "Deriving intrinsic images from image sequences" shows some results with transparencies.
If you are close enough, you may be able to use the glass refraction (a la Snell's law) to detect the glass from multiple views.
I also think that reflections (specular regions) are a good indication for curved glasses.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With