I have a R data.frame containing longitude, latitude which spans over the entire USA map. When X number of entries are all within a small geographic region of say a few degrees longitude & a few degrees latitude, I want to be able to detect this and then have my program then return the coordinates for the geographic bounding box. Is there a Python or R CRAN package that already does this? If not, how would I go about ascertaining this information?
Clusters are identified by applying a mathematical algorithm that assigns vertices (i.e., users) to subgroups of relatively more connected groups of vertices in the network. The Clauset-Newman-Moore algorithm [8], used in NodeXL, enables you to analyze large network datasets to efficiently find subgroups.
A geographical cluster is a localized anomaly, usually an excess of something given the distribution or variation of something else. Often it is considered as an incidence rate that is unusual in that there is more of some variable than might be expected.
Unlike many other statistical methods, cluster analysis is typically used when there is no assumption made about the likely relationships within the data. It provides information about where associations and patterns in data exist, but not what those might be or what they mean.
Knox (1989, p. 17) defines a spatial cluster as, 'a geographically bounded group of occurrences of sufficient size and concentration to be unlikely to have occurred by chance. ' This is a useful operational definition, but there are very few situations when phenomena are expected to be distributed randomly in space.
I was able to combine Joran's answer along with Dan H's comment. This is an example ouput:
The python code emits functions for R: map() and rect(). This USA example map was created with:
map('state', plot = TRUE, fill = FALSE, col = palette())
and then you can apply the rect()'s accordingly from with in the R GUI interpreter (see below).
import math
from collections import defaultdict
to_rad = math.pi / 180.0 # convert lat or lng to radians
fname = "site.tsv" # file format: LAT\tLONG
threshhold_dist=50 # adjust to your needs
threshhold_locations=15 # minimum # of locations needed in a cluster
def dist(lat1,lng1,lat2,lng2):
global to_rad
earth_radius_km = 6371
dLat = (lat2-lat1) * to_rad
dLon = (lng2-lng1) * to_rad
lat1_rad = lat1 * to_rad
lat2_rad = lat2 * to_rad
a = math.sin(dLat/2) * math.sin(dLat/2) + math.sin(dLon/2) * math.sin(dLon/2) * math.cos(lat1_rad) * math.cos(lat2_rad)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a));
dist = earth_radius_km * c
return dist
def bounding_box(src, neighbors):
neighbors.append(src)
# nw = NorthWest se=SouthEast
nw_lat = -360
nw_lng = 360
se_lat = 360
se_lng = -360
for (y,x) in neighbors:
if y > nw_lat: nw_lat = y
if x > se_lng: se_lng = x
if y < se_lat: se_lat = y
if x < nw_lng: nw_lng = x
# add some padding
pad = 0.5
nw_lat += pad
nw_lng -= pad
se_lat -= pad
se_lng += pad
# sutiable for r's map() function
return (se_lat,nw_lat,nw_lng,se_lng)
def sitesDist(site1,site2):
#just a helper to shorted list comprehension below
return dist(site1[0],site1[1], site2[0], site2[1])
def load_site_data():
global fname
sites = defaultdict(tuple)
data = open(fname,encoding="latin-1")
data.readline() # skip header
for line in data:
line = line[:-1]
slots = line.split("\t")
lat = float(slots[0])
lng = float(slots[1])
lat_rad = lat * math.pi / 180.0
lng_rad = lng * math.pi / 180.0
sites[(lat,lng)] = (lat,lng) #(lat_rad,lng_rad)
return sites
def main():
sites_dict = {}
sites = load_site_data()
for site in sites:
#for each site put it in a dictionary with its value being an array of neighbors
sites_dict[site] = [x for x in sites if x != site and sitesDist(site,x) < threshhold_dist]
results = {}
for site in sites:
j = len(sites_dict[site])
if j >= threshhold_locations:
coord = bounding_box( site, sites_dict[site] )
results[coord] = coord
for bbox in results:
yx="ylim=c(%s,%s), xlim=c(%s,%s)" % (results[bbox]) #(se_lat,nw_lat,nw_lng,se_lng)
print('map("county", plot=T, fill=T, col=palette(), %s)' % yx)
rect='rect(%s,%s, %s,%s, col=c("red"))' % (results[bbox][2], results[bbox][0], results[bbox][3], results[bbox][2])
print(rect)
print("")
main()
Here is an example TSV file (site.tsv)
LAT LONG
36.3312 -94.1334
36.6828 -121.791
37.2307 -121.96
37.3857 -122.026
37.3857 -122.026
37.3857 -122.026
37.3895 -97.644
37.3992 -122.139
37.3992 -122.139
37.402 -122.078
37.402 -122.078
37.402 -122.078
37.402 -122.078
37.402 -122.078
37.48 -122.144
37.48 -122.144
37.55 126.967
With my data set, the output of my python script, shown on the USA map. I changed the colors for clarity.
rect(-74.989,39.7667, -73.0419,41.5209, col=c("red"))
rect(-123.005,36.8144, -121.392,38.3672, col=c("green"))
rect(-78.2422,38.2474, -76.3,39.9282, col=c("blue"))
Addition on 2013-05-01 for Yacob
These 2 lines give you the over all goal...
map("county", plot=T )
rect(-122.644,36.7307, -121.46,37.98, col=c("red"))
If you want to narrow in on a portion of a map, you can use ylim
and xlim
map("county", plot=T, ylim=c(36.7307,37.98), xlim=c(-122.644,-121.46))
# or for more coloring, but choose one or the other map("country") commands
map("county", plot=T, fill=T, col=palette(), ylim=c(36.7307,37.98), xlim=c(-122.644,-121.46))
rect(-122.644,36.7307, -121.46,37.98, col=c("red"))
You will want to use the 'world' map...
map("world", plot=T )
It has been a long time since I have used this python code I have posted below so I will try my best to help you.
threshhold_dist is the size of the bounding box, ie: the geographical area
theshhold_location is the number of lat/lng points needed with in
the bounding box in order for it to be considered a cluster.
Here is a complete example. The TSV file is located on pastebin.com. I have also included an image generated from R that contains the output of all of the rect() commands.
# pyclusters.py
# May-02-2013
# -John Taylor
# latlng.tsv is located at http://pastebin.com/cyvEdx3V
# use the "RAW Paste Data" to preserve the tab characters
import math
from collections import defaultdict
# See also: http://www.geomidpoint.com/example.html
# See also: http://www.movable-type.co.uk/scripts/latlong.html
to_rad = math.pi / 180.0 # convert lat or lng to radians
fname = "latlng.tsv" # file format: LAT\tLONG
threshhold_dist=20 # adjust to your needs
threshhold_locations=20 # minimum # of locations needed in a cluster
earth_radius_km = 6371
def coord2cart(lat,lng):
x = math.cos(lat) * math.cos(lng)
y = math.cos(lat) * math.sin(lng)
z = math.sin(lat)
return (x,y,z)
def cart2corrd(x,y,z):
lon = math.atan2(y,x)
hyp = math.sqrt(x*x + y*y)
lat = math.atan2(z,hyp)
return(lat,lng)
def dist(lat1,lng1,lat2,lng2):
global to_rad, earth_radius_km
dLat = (lat2-lat1) * to_rad
dLon = (lng2-lng1) * to_rad
lat1_rad = lat1 * to_rad
lat2_rad = lat2 * to_rad
a = math.sin(dLat/2) * math.sin(dLat/2) + math.sin(dLon/2) * math.sin(dLon/2) * math.cos(lat1_rad) * math.cos(lat2_rad)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a));
dist = earth_radius_km * c
return dist
def bounding_box(src, neighbors):
neighbors.append(src)
# nw = NorthWest se=SouthEast
nw_lat = -360
nw_lng = 360
se_lat = 360
se_lng = -360
for (y,x) in neighbors:
if y > nw_lat: nw_lat = y
if x > se_lng: se_lng = x
if y < se_lat: se_lat = y
if x < nw_lng: nw_lng = x
# add some padding
pad = 0.5
nw_lat += pad
nw_lng -= pad
se_lat -= pad
se_lng += pad
#print("answer:")
#print("nw lat,lng : %s %s" % (nw_lat,nw_lng))
#print("se lat,lng : %s %s" % (se_lat,se_lng))
# sutiable for r's map() function
return (se_lat,nw_lat,nw_lng,se_lng)
def sitesDist(site1,site2):
# just a helper to shorted list comprehensioin below
return dist(site1[0],site1[1], site2[0], site2[1])
def load_site_data():
global fname
sites = defaultdict(tuple)
data = open(fname,encoding="latin-1")
data.readline() # skip header
for line in data:
line = line[:-1]
slots = line.split("\t")
lat = float(slots[0])
lng = float(slots[1])
lat_rad = lat * math.pi / 180.0
lng_rad = lng * math.pi / 180.0
sites[(lat,lng)] = (lat,lng) #(lat_rad,lng_rad)
return sites
def main():
color_list = ( "red", "blue", "green", "yellow", "orange", "brown", "pink", "purple" )
color_idx = 0
sites_dict = {}
sites = load_site_data()
for site in sites:
#for each site put it in a dictionarry with its value being an array of neighbors
sites_dict[site] = [x for x in sites if x != site and sitesDist(site,x) < threshhold_dist]
print("")
print('map("state", plot=T)') # or use: county instead of state
print("")
results = {}
for site in sites:
j = len(sites_dict[site])
if j >= threshhold_locations:
coord = bounding_box( site, sites_dict[site] )
results[coord] = coord
for bbox in results:
yx="ylim=c(%s,%s), xlim=c(%s,%s)" % (results[bbox]) #(se_lat,nw_lat,nw_lng,se_lng)
# important!
# if you want an individual map for each cluster, uncomment this line
#print('map("county", plot=T, fill=T, col=palette(), %s)' % yx)
if len(color_list) == color_idx:
color_idx = 0
rect='rect(%s,%s, %s,%s, col=c("%s"))' % (results[bbox][2], results[bbox][0], results[bbox][3], results[bbox][1], color_list[color_idx])
color_idx += 1
print(rect)
print("")
main()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With