Let's imagine, that we have a process, which accepts data of the following type:
{"date":"2014-05-05", "url":"http://some.website.com","counter":3}
date
should be a
parseable date, url
should also conform the normal url syntax.date
should be in the future, url
should be an accessible
address, returning 200 OK
.To make it clean, one must separate those two validation routines into different units (classes, utils, whatever). The desired final behaviour, however, must give user clear understanding of ALL violations, that are present in data. Something like:
{"Errors":[
"Specified date is not in the future",//Formal validation failed
"Specified URL has invalid syntax"//Logical validation failed
]}
Error
objects and are full of checks like
Error.hasErrors()
or error==null
, which does not look elegant.javax.validation
, which gives you all violations on all field at once. Same approach could be implemented for content validation, but I am not sure, that this is the best way to do this. Question: what is the best practice for handling multiple exceptions/violations of various nature?
UPD: short digest of answers: collect Violations
, build an Exception
, containing their context, cause and description, use an interceptor to render. See reference links from answers:
http://beanvalidation.org/1.0/spec/ JSR 303 specification
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html Spring Bean Validation
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html Java EE validation
Which Design Pattern To Use For Validation
Why not use exceptions as regular flow of control?
There are good and bad sides to this pattern: it’s familiar and well tried; unfortunately, it results in a potential explosion of code volume (if you have 30 validation checks, you’ll need 30 classes), which makes it difficult to read. It also doesn’t deal with the scenario whereby one validation condition depends on the success of another.
Data validation is performed before registration or deletion of the object. There are a set of rules to be checked before the object can be registered and another set of rules for deletion.
When doing validation, There’s a number of options to how you approach it: you could simply have a series of conditional statements testing logical criteria, you could follow the chain of responsibility pattern, use some form of polymorphism with the strategy pattern, or even, as I outline below, try using the builder pattern.
When we want to chain additional validator we call add (handler: ValidationHandler<InputType>) which links our new handler to the previous handler and sets it as the new tailValidationHandler. Returning self is what allows us to build up our handlers.
You can do the following:
define an abstract Check class, as follows:
public abstract class Check {
private final List<Check> subChecks = new ArrayList<Check>();
public Check add(Check subCheck) { subChecks.add(subCheck); return this }
public void run(Data dataToInspect, List<Error> errors) {
Error e = check(dataToInspect);
if (e != null) {
errors.add(e);
return;
}
for (Check subCheck : subChecks) {
subCheck.run(dataToInspect, errors);
}
}
// Returns null if dataToInspect is OK.
public abstract Error check(Data dataToInspect);
}
class Data
is the class holding the data (that needs to be checked). Can be a String, a JSON object, what have you.
class Error
represents a problem detected in the data should be roughly something like:
public class Error {
private String problem;
public Error(String problem) { this.problem = problem }
public String getProblem() { return problem }
// maybe additional fields and method to better describe the detected problem...
}
You then have code that runs the check against piece of data:
public class Checker {
private final List<Error> errors = new ArrayList<Error>();
private final List<Check> checks = new ArrayList<Check>();
public Checker() {
checks.add(new DateIsParsableCheck().add(new DateIsInTheFurutreCheck());
checks.add(new UrlIsWellFormed().add(new UrlIsAccessible());
checks.add();
..
}
public void check(Data d) {
for (Check c : checks) {
Error e = c.run(d, errors);
if (e != null)
errors.add(e);
}
}
}
Slightly changed my original answer. In the current answer there is the notion of subchecks: if a check called x
has a subcheck called y
then the y
check will run only if the x
check succeeded. For instance, if the Date is not parseable there is no point to check it it is in the future.
In your case I think that all/most logical check should be sub-checks of a formal check.
I don't think there is a best practice, because it depends on what you try to achieve. In my opinion, exceptions and their messages should not be used to be displayed directly to the user. Exceptions are way too technical and do depend heavily on the context where they get thrown.
Hence, my approach would be to design a container type which collects all the exceptions thrown by your validations. Those exceptions should preserve as much of the context as possible (not in form of an exception message, but in form of fields passed into the constructor). Provide getter methods to make those fields (properties) accessible. When rendering the view, you may iterate over all entries of your container and generate a proper, human readable, i18n message.
Here is some pseudo-code as requested by the comment of @AlexandreSantos. It is not polished nor proven, just my first draft. So do not expect excellent design. It's just an example how it could be implemented / designed:
public static void main(String[] args) {
Violations violations = new Violations();
Integer age = AgeValidator.parse("0042", "age", violations);
URL url = UrlValidator.parse("http://some.website.com", "url", violations);
}
// Validator defining all the rules for a valid age value
public class AgeValidator {
// Collection of validation rules for age values
private static final Collection<Validator<String>> VALIDATORS = ...;
// Pass in the value to validate, the name of the field
// defining the value and the container to collect all
// violations (could be a Map<String, ValidationException>)
//
// a return value of null indicates at least one rule violation
public static Integer parse(String value, String name, Violations violations) {
try {
for (Validator<String> validator : VALIDATORS) validator.validate(value);
} catch (ValidationException e) {
violations.add(name, e);
}
return violations.existFor(name) ? null : Integer.parseInt(value);
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With