I'm trying to generate a density plot for a list of x,y
points, each one of them associated to a given density value. See this image to see what I'm after.
I tried applying the code written by Joe Kington in this answer but it returns the numpy.linalg.linalg.LinAlgError: singular matrix
error.
This is a MWE
of my code (basically the same code by Joe, only the data arrays are changed):
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate
x = np.array([0.005, 0.018, 0.008, 0.015, 0.016, 0.0135, 0.0155, 0.0155, 0.0105, 0.005, 0.0125, 0.0185, 0.0095, 0.003, 0.019, 0.0175, 0.0165, 0.011, 0.007, 0.0195, 0.017, 0.011, 0.0125, 0.0165, 0.0045, 0.0145, 0.02, 0.0185, 0.001, 0.015, 0.0105, 0.016, 0.0185, 0.0035, 0.0025, 0.0015, 0.0055, 0.0185, 0.005, 0.0135, 0.0175, 0.0095, 0.0095, 0.0115, 0.0025, 0.0105, 0.0015, 0.0045, 0.011, 0.009, 0.0045, 0.013, 0.016, 0.009, 0.018, 0.0145, 0.013, 0.0105, 0.019, 0.0145, 0.0145, 0.016, 0.014, 0.01, 0.018, 0.0075, 0.0195, 0.019, 0.012, 0.0035, 0.015, 0.0095, 0.0005, 0.0045, 0.011, 0.005, 0.019, 0.0015, 0.01, 0.0055, 0.0005, 0.018, 0.0155, 0.0065, 0.016, 0.002, 0.015, 0.0045, 0.0075, 0.0035, 0.0145, 0.018, 0.0145, 0.009, 0.0125, 0.005, 0.002, 0.0125, 0.013, 0.002, 0.007, 0.0125, 0.006, 0.015, 0.009, 0.0115, 0.0095, 0.016, 0.0045, 0.0035, 0.004, 0.0195, 0.0085, 0.0115, 0.011, 0.0175, 0.0115, 0.0085, 0.0185, 0.009, 0.007, 0.006, 0.0195, 0.018, 0.0115, 0.004, 0.017, 0.001, 0.0065, 0.018, 0.0175, 0.0115, 0.013, 0.0095, 0.0175, 0.0175, 0.012, 0.006, 0.015, 0.0075, 0.0015, 0.0085, 0.011, 0.0025, 0.001, 0.0105, 0.02, 0.0005, 0.0035, 0.0185, 0.0085, 0.011, 0.0005, 0.0055, 0.018, 0.019, 0.004, 0.01, 0.002, 0.0005, 0.0085, 0.0095, 0.0175, 0.0035, 0.0125, 0.0085, 0.0175, 0.011, 0.011, 0.0075, 0.0185, 0.0115, 0.0085, 0.005, 0.002, 0.003, 0.0095, 0.007, 0.011, 0.001, 0.0135, 0.003, 0.0125, 0.007, 0.0055, 0.0075, 0.019, 0.0055, 0.001, 0.0055, 0.003, 0.0085, 0.017, 0.01, 0.0065, 0.008, 0.013, 0.005, 0.0115, 0.005, 0.0055, 0.019, 0.001, 0.0095, 0.011, 0.008, 0.0165, 0.0195, 0.0025, 0.02, 0.0045, 0.0175, 0.018, 0.012, 0.0055, 0.008, 0.0025, 0.0155, 0.0055, 0.003, 0.0055, 0.0065, 0.011, 0.013, 0.0075, 0.0045, 0.005, 0.004, 0.0155, 0.0075, 0.0075, 0.0065, 0.0105, 0.0185, 0.0045, 0.0175, 0.0055, 0.0045, 0.0145, 0.015, 0.02, 0.007, 0.019, 0.019, 0.0075, 0.004, 0.009, 0.016, 0.0125, 0.0135, 0.012, 0.0145, 0.017, 0.006, 0.0085, 0.015, 0.0105, 0.0005, 0.003, 0.011, 0.0035, 0.0065, 0.011, 0.017, 0.003, 0.0145, 0.011, 0.0025, 0.0175, 0.011, 0.014, 0.01, 0.004, 0.0015, 0.0075, 0.0095, 0.009, 0.0195, 0.0025, 0.0135, 0.015, 0.006, 0.016, 0.016, 0.0105, 0.0065, 0.011, 0.019, 0.0145, 0.0065, 0.0185, 0.019, 0.0075, 0.0095, 0.0145, 0.013, 0.0175, 0.0085, 0.002, 0.005, 0.013, 0.0045, 0.0175, 0.01, 0.019, 0.004, 0.018, 0.0135, 0.0105, 0.0095, 0.0015, 0.0145, 0.019, 0.02, 0.012, 0.0145, 0.018, 0.0195, 0.001, 0.013, 0.0145, 0.0015, 0.0025, 0.0085, 0.0075, 0.0035, 0.019, 0.0125, 0.017, 0.0145, 0.003, 0.011, 0.0135, 0.003, 0.0085, 0.0195, 0.011, 0.015])
y = np.array([7.1, 9.35, 6.7, 9.9, 7.85, 7.4, 8.3, 8.8, 9.55, 8.55, 9.45, 8.7, 8.45, 8.0, 7.6, 8.45, 7.25, 7.95, 7.6, 7.75, 8.4, 7.55, 7.5, 7.1, 8.7, 7.0, 8.55, 9.45, 6.95, 9.6, 9.4, 7.65, 7.7, 9.15, 8.15, 9.95, 8.1, 8.6, 9.2, 8.8, 7.8, 7.85, 9.2, 6.9, 8.1, 9.8, 8.05, 7.45, 7.05, 7.3, 9.25, 8.8, 7.7, 9.25, 9.0, 6.7, 6.9, 9.15, 7.9, 7.35, 7.8, 7.35, 8.0, 7.0, 9.75, 8.95, 7.75, 9.25, 8.95, 7.6, 7.2, 7.6, 9.35, 7.3, 7.0, 6.65, 7.0, 9.9, 6.85, 9.8, 7.6, 9.35, 7.7, 8.2, 9.55, 7.0, 8.05, 9.95, 7.2, 9.7, 9.65, 8.85, 7.2, 9.9, 7.35, 6.9, 7.65, 9.8, 8.6, 8.75, 8.8, 7.1, 7.05, 7.8, 8.9, 8.15, 10.05, 9.95, 6.85, 7.1, 8.6, 9.45, 7.4, 7.45, 6.6, 9.9, 7.7, 9.95, 9.9, 8.1, 10.0, 7.3, 7.85, 9.95, 8.6, 8.55, 9.7, 8.6, 8.8, 9.6, 8.45, 6.65, 7.05, 8.5, 8.85, 9.55, 9.75, 8.95, 6.9, 6.8, 7.15, 9.95, 9.05, 8.1, 9.4, 8.05, 7.55, 8.85, 9.9, 9.65, 6.65, 8.6, 7.15, 8.95, 8.45, 8.8, 9.3, 9.4, 8.3, 9.85, 7.45, 6.85, 7.25, 7.55, 7.35, 9.5, 9.85, 9.75, 7.75, 7.55, 6.65, 6.6, 7.35, 8.25, 7.5, 8.2, 9.0, 7.95, 8.3, 8.15, 7.7, 7.45, 7.75, 7.8, 8.7, 9.9, 8.2, 7.1, 8.9, 8.85, 6.8, 7.2, 7.1, 7.65, 8.7, 6.9, 9.4, 7.25, 9.8, 8.4, 7.6, 8.5, 7.95, 6.7, 8.45, 9.2, 8.8, 7.85, 7.95, 8.7, 7.55, 9.6, 8.85, 8.9, 8.1, 8.25, 8.1, 8.3, 8.9, 7.1, 9.8, 8.25, 8.75, 6.85, 8.9, 6.95, 9.0, 8.35, 9.0, 7.15, 8.9, 8.2, 9.15, 6.65, 9.35, 8.85, 6.85, 7.8, 8.4, 7.75, 7.55, 7.85, 7.6, 8.2, 7.15, 8.55, 7.8, 8.8, 9.75, 9.0, 9.65, 7.15, 7.3, 7.1, 9.7, 7.75, 8.85, 9.75, 7.75, 7.1, 9.8, 9.95, 7.0, 9.0, 6.65, 7.55, 6.7, 7.65, 9.7, 7.15, 8.6, 8.55, 7.0, 9.4, 7.25, 9.0, 9.45, 8.2, 7.9, 8.95, 8.05, 8.9, 7.7, 7.35, 7.55, 9.75, 8.8, 7.35, 8.2, 8.7, 8.7, 8.2, 7.6, 8.4, 7.15, 8.8, 7.25, 7.4, 7.65, 9.2, 7.3, 7.05, 8.45, 7.0, 8.55, 8.2, 8.45, 7.4, 9.15, 8.45, 7.15, 8.75, 7.05, 7.5, 9.45, 8.85, 7.15, 7.85, 8.9, 8.8, 9.2, 8.1, 9.95, 7.55, 7.4, 9.65, 6.85, 8.85, 8.9, 7.0, 7.2, 8.6, 7.4, 8.55, 7.45, 8.15, 9.45, 6.85])
z = np.array([3021.0279029149683, 4975.3037400799076, 2166.9841077494534, 6289.9297927621046, 1769.826392967929, 1718.8244103972752, 1762.4826301548458, 2892.0488281847693, 6271.3213266755065, 2065.6752057097788, 3376.244940630062, 2082.5656535205321, 1823.5812514071088, 1973.1591378311682, 1797.3251073485019, 2612.0911561842113, 2249.1162757223706, 2398.027412668795, 2502.482089998005, 1819.1869918508887, 2377.09819196745, 1781.4988210953811, 1706.0247161815421, 1909.0435719934635, 1662.0553564384486, 2132.6588030625549, 2136.2280746624447, 5130.5751044254675, 1793.6247353368949, 6337.4932727294181, 4462.7694292877422, 2110.5308215132864, 1867.4707084026049, 2088.1839351230669, 2461.8645333625827, 5419.1889489642499, 2129.4105626134383, 2005.6244970468119, 3827.1395925866591, 2513.2456828786935, 2164.255723310996, 2206.3593513204733, 2790.194999425913, 1877.3040520904212, 1879.8192626127952, 5842.4922672912217, 2439.7109266628595, 1825.4377748685583, 1992.6098863537443, 1903.4690337855423, 4266.0357702742913, 1910.2633981988065, 1881.8280410083426, 3366.6103402944168, 2647.1141831688333, 1875.7829962178498, 1918.1350622011096, 2053.737955354547, 1828.9518511755123, 1884.073961574501, 1865.9550644370991, 1763.9694644756794, 1926.8518278729125, 2097.1403545248913, 6198.7268871463293, 1708.009992247851, 1818.0568126526525, 4452.1016078799939, 2047.2960066111493, 1963.8657274866737, 2047.4948739008223, 1768.3096547617561, 2447.5028998716234, 2482.7108962691, 2128.0018288469919, 1806.7301882321021, 1772.3246603000719, 5803.738518186321, 1798.572994122713, 6342.6198323644467, 2719.0407047465369, 5872.4448971310285, 1718.0287344031356, 1975.8553803398997, 4089.0418254578526, 2827.6461855175298, 2047.5731199798217, 6182.5306850708821, 1799.2216814306257, 5821.8657988768718, 5261.9920805401234, 1728.5326365076648, 2498.4478787599023, 5711.0176941257841, 2132.2157852666737, 2305.8342275164105, 1742.9260379707273, 4495.0605229412349, 2307.025813218379, 2267.0830186364001, 1850.0099188084214, 1788.4569797768027, 1799.9473765786229, 1701.3152693662535, 2714.7002916944525, 1832.2386812881207, 6033.4178712040912, 5795.5855254086073, 2354.2479143787036, 3136.1334489510668, 2053.8469973983347, 6322.4332297897745, 1981.3654435442081, 1819.4461046157055, 2257.6059180738293, 4709.7418781823208, 1961.9279449958558, 6243.2423074873122, 6175.1119528389308, 2177.0613286219436, 6187.6795632100693, 1830.8592800553179, 1811.1712359480662, 6106.7472822509098, 1952.8809811764972, 1870.965173064684, 6228.8248244690431, 2699.164454284873, 2295.7322910170833, 3807.5109993951892, 2188.8297091094282, 1813.4642741233388, 2413.5448089794727, 1989.4306848559088, 2201.1048218029914, 6295.4190187566846, 6243.2423074873122, 2733.0328883407497, 2158.2110618263923, 2050.959769289871, 2543.0427216636222, 6233.4918957305254, 1919.4414073039704, 1703.7336685448629, 3858.7713493494748, 1943.9159186025965, 2079.3275013804068, 2319.7081124813781, 5994.9649670064709, 6251.8593579480848, 2139.6291622278786, 2162.581672501492, 2841.7605426723185, 2048.5187718112393, 2193.2036553224912, 2251.9333157773744, 2629.2190178228229, 3690.6316021925595, 2637.030920619778, 5842.4922672912217, 1884.2560494399575, 1843.1577358091208, 2163.1556153631163, 2651.9755344260984, 2209.7526452687962, 3108.0919418402241, 4387.2789976920412, 4698.6052131550832, 1947.2382624692616, 1721.7122378504125, 1883.567174876209, 1791.5387081525541, 1808.3840823374492, 2027.1259150370804, 3008.0670290601133, 2783.8860603503094, 3548.6751272484839, 2119.2582438340964, 1842.8306356209096, 1811.8758696043149, 1993.8806420387857, 2230.114543957538, 2524.6101073467694, 2369.3233933185866, 2317.7688836929988, 6134.6748393553416, 1885.4706325047302, 3154.9375544439058, 2314.5555039102414, 1766.5362521033173, 2819.8071270945788, 2689.7822575815635, 2204.2481365143462, 1971.6766514902765, 2272.7389701563638, 1756.1110070448294, 2800.2434013912875, 2093.2498937672021, 6187.6795632100693, 1841.0113159699797, 1860.7680087210833, 1982.8860785887384, 2801.9132242057758, 2744.0105956647167, 2025.3324054638258, 2722.3349116785962, 2684.0320952587235, 1877.8708415793587, 1997.7146695460535, 2104.1892082880063, 2725.8442629042142, 3625.9437800615337, 2145.9331536509681, 1964.5714745836017, 1941.6269985047763, 1840.9640642894606, 1858.1655072711599, 2122.3339549617058, 2076.5760478221541, 2185.2013499877644, 6148.6869234687683, 1996.7536642289936, 2231.2474284717237, 2098.8536029973343, 1742.4203420876274, 2306.2812497850091, 2721.5057732393784, 1875.4024744482288, 3064.375291034848, 1829.6452820628654, 1794.8335411785936, 1915.9536359891322, 2502.9808788537543, 1768.7422023935612, 6233.4309130206575, 2399.5441046522633, 1771.295681640004, 2095.2163400865065, 2170.1556654381593, 2121.6059394283293, 2207.0814350651663, 1809.6000363096575, 1908.4235529291209, 1856.0817854726031, 1862.2542145669672, 1778.8206888476191, 1754.4167167356909, 2747.6536379759777, 4392.6756654129649, 3565.8650546652166, 5476.6856895960746, 2786.4985484893873, 1915.735638108521, 2041.4366888494503, 6187.6795632100693, 2341.2486995710688, 2103.793796652817, 5865.8139190498505, 1699.9828833421673, 1993.3785877622747, 5964.8913804791482, 6156.2099074387725, 2413.3395548571748, 2099.4689601305859, 2915.1159717066835, 1782.5651767836252, 1850.0197312477569, 2104.4166049482315, 6206.2249413381178, 2990.8556200784769, 2235.4837197118086, 1952.9282245926095, 2414.4380556536712, 3224.5742704799181, 1712.3537287234201, 3377.4874074163745, 3562.3822787444183, 1674.4781633929065, 1770.3781243649291, 2512.7270580207683, 2519.4737433197356, 2600.7028461763307, 1687.6149740077039, 1827.2126312245898, 1765.946329287706, 5842.4922672912217, 2133.4553630401206, 1987.9591394650151, 1818.3518579455942, 1999.0936725599697, 1988.5131267757788, 2059.2467809359555, 1741.9951505552397, 2018.1693071570285, 2441.0117858276699, 2031.5820629850468, 2021.9955740863736, 2121.6430818723975, 1789.2775504127987, 5638.9892789948635, 2326.4686662613717, 2959.3842095472223, 1984.1449776696347, 1774.9347978340554, 2327.371938051715, 1881.5330953605135, 2139.1151745789821, 1669.0467180215926, 2525.0241948857788, 1906.6525847893236, 2557.5130308053958, 1900.4062816966011, 2095.8573933740408, 1773.6179090742717, 6266.4557619192337, 1935.0743271817748, 2135.1532490883042, 1738.9633786795393, 2115.9327681390764, 2580.6955754655746, 2720.535179681423, 1860.1178987262649, 5333.5674851558724, 1778.2603949578265, 2081.653719365047, 6048.5456782611936, 1904.0520140723243, 2135.8697908711961, 2297.7416719290022, 2290.7393924215753, 3308.5077581082523, 1689.2883297381291, 1754.1733576638849, 2134.7146778225488, 1856.944696747086, 1820.2830994284482, 6183.9447504226655, 2285.18744670974])
# Set up a regular grid of interpolation points
xi, yi = np.linspace(x.min(), x.max(), 100), np.linspace(y.min(), y.max(), 100)
xi, yi = np.meshgrid(xi, yi)
# Interpolate
rbf = scipy.interpolate.Rbf(x, y, z, function='linear')
zi = rbf(xi, yi)
plt.imshow(zi, vmin=z.min(), vmax=z.max(), origin='lower',
extent=[x.min(), x.max(), y.min(), y.max()])
plt.scatter(x, y, c=z)
plt.colorbar()
plt.show()
(sorry for the messy x,y,z
arrays but that's how my original code gets them from another portion of the code)
Is there a way to by-pass that error given the format of my data? This answer states that using numpy.linalg.lstsq
could serve as a workaround but I haven't been able to make it work.
The problem is that you have multiple points with the same (x,y) value and different z values (see for example points 1 and 81). An easy solution, but one that's a bit of a hack, is simply to add noise to the (x,y) points.
x = x + np.random.normal(scale=1e-8, size=x.shape)
y = y + np.random.normal(scale=1e-8, size=y.shape)
If you do this, you'll fix the problem about the non-invertible matrix.
Another problem I noticed is that the final surface ends up looking really stretched, because the RBF function assumes that both the x and y coordinates are scaled similarly, but in your case they're not. Rescaling them both to be between zero and one fixes this. You can still use their original scales for plotting.
rescale = lambda x: (x - x.min()) / (x.max() - x.min())
xs = rescale(x)
ys = rescale(y)
I would recommend rescaling before adding the noise, so that the noise on both axes is scaled the same.
Finally, you should add aspect='auto'
to your imshow
call so that the resulting plot is a reasonable shape. With those changes, I think your code should do what you want.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With