Is there a method to overlay something analogous to a density curve when the vertical axis is frequency or relative frequency? (Not an actual density function, since the area need not integrate to 1.) The following question is similar:
ggplot2: histogram with normal curve, and the user self-answers with the idea to scale ..count..
inside of geom_density()
. However this seems unusual.
The following code produces an overinflated "density" line.
df1 <- data.frame(v = rnorm(164, mean = 9, sd = 1.5))
b1 <- seq(4.5, 12, by = 0.1)
hist.1a <- ggplot(df1, aes(v)) +
stat_bin(aes(y = ..count..), color = "black", fill = "blue",
breaks = b1) +
geom_density(aes(y = ..count..))
hist.1a
@joran's response/comment got me thinking about what the appropriate scaling factor would be. For posterity's sake, here's the result.
When Vertical Axis is Frequency (aka Count)
Thus, the scaling factor for a vertical axis measured in bin counts is
In this case, with N = 164
and the bin width as 0.1
, the aesthetic for y in the smoothed line should be:
y = ..density..*(164 * 0.1)
Thus the following code produces a "density" line scaled for a histogram measured in frequency (aka count).
df1 <- data.frame(v = rnorm(164, mean = 9, sd = 1.5))
b1 <- seq(4.5, 12, by = 0.1)
hist.1a <- ggplot(df1, aes(x = v)) +
geom_histogram(aes(y = ..count..), breaks = b1,
fill = "blue", color = "black") +
geom_density(aes(y = ..density..*(164*0.1)))
hist.1a
When Vertical Axis is Relative Frequency
Using the above, we could write
hist.1b <- ggplot(df1, aes(x = v)) +
geom_histogram(aes(y = ..count../164), breaks = b1,
fill = "blue", color = "black") +
geom_density(aes(y = ..density..*(0.1)))
hist.1b
When Vertical Axis is Density
hist.1c <- ggplot(df1, aes(x = v)) +
geom_histogram(aes(y = ..density..), breaks = b1,
fill = "blue", color = "black") +
geom_density(aes(y = ..density..))
hist.1c
Try this instead:
ggplot(df1,aes(x = v)) +
geom_histogram(aes(y = ..ncount..)) +
geom_density(aes(y = ..scaled..))
library(ggplot2)
smoothedHistogram <- function(dat, y, bins=30, xlabel = y, ...){
gg <- ggplot(dat, aes_string(y)) +
geom_histogram(bins=bins, center = 0.5, stat="bin",
fill = I("midnightblue"), color = "#E07102", alpha=0.8)
gg_build <- ggplot_build(gg)
area <- sum(with(gg_build[["data"]][[1]], y*(xmax - xmin)))
gg <- gg +
stat_density(aes(y=..density..*area),
color="#BCBD22", size=2, geom="line", ...)
gg$layers <- gg$layers[2:1]
gg + xlab(xlabel) +
theme_bw() + theme(axis.title = element_text(size = 16),
axis.text = element_text(size = 12))
}
dat <- data.frame(x = rnorm(10000))
smoothedHistogram(dat, "x")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With