I am trying to clean experimental data using python with numpy and pandas. Some of my measurements are implausible. I want to remove these measurements and the 2 preceeding and 2 following measurements from the same sample. I am trying to find an elegant way to achieve this without using a for loop as my dataframes are quite large.
My data:
>>>df
Date Time Sample Measurement
index
7737 2019-04-15 06:40:00 A 6.560
7739 2019-04-15 06:50:00 A 1.063
7740 2019-04-15 06:55:00 A 1.136
7741 2019-04-15 07:00:00 A 1.301
7742 2019-04-15 07:05:00 A 1.435
7743 2019-04-15 07:10:00 A 1.704
7744 2019-04-15 07:15:00 A 1.961
7745 2019-04-15 07:20:00 A 2.023
7746 2019-04-15 07:25:00 A 6.284
7747 2019-04-15 07:30:00 A 2.253
7748 2019-04-15 07:35:00 A 6.549
7749 2019-04-15 07:40:00 A 2.591
7750 2019-04-15 07:45:00 A 6.321
7752 2019-04-15 07:55:00 A 0.937
7753 2019-04-15 08:00:00 B 0.372
7754 2019-04-15 08:05:00 B 0.382
7755 2019-04-15 08:10:00 B 0.390
7756 2019-04-15 08:15:00 B 0.455
7757 2019-04-15 08:20:00 B 6.499
import numpy as np
import pandas as pd
df['Measurement'] = np.where(df['Measurement']>6.0, np.nan, df['Measurement'])
gives
>>>df
Date Time Sample Measurement
index
7737 2019-04-15 06:40:00 A NaN
7739 2019-04-15 06:50:00 A 1.063
7740 2019-04-15 06:55:00 A 1.136
7741 2019-04-15 07:00:00 A 1.301
7742 2019-04-15 07:05:00 A 1.435
7743 2019-04-15 07:10:00 A 1.704
7744 2019-04-15 07:15:00 A 1.961
7745 2019-04-15 07:20:00 A 2.023
7746 2019-04-15 07:25:00 A NaN
7747 2019-04-15 07:30:00 A 2.253
7748 2019-04-15 07:35:00 A NaN
7749 2019-04-15 07:40:00 A 2.591
7750 2019-04-15 07:45:00 A NaN
7752 2019-04-15 07:55:00 A 0.937
7753 2019-04-15 08:00:00 B 0.372
7754 2019-04-15 08:05:00 B 0.382
7755 2019-04-15 08:10:00 B 0.390
7756 2019-04-15 08:15:00 B 0.455
7757 2019-04-15 08:20:00 B NaN
I deleted rows using
df= df[np.isfinite(df['Measurement'])]
The result I am trying to obtain after removing the 2 rows preceeding and following a row containing NaN within a sample (note that 7753 has to stay as this measurement belongs to sample B).
Date Time Sample Measurement
index
7741 2019-04-15 07:00:00 A 1.301
7742 2019-04-15 07:05:00 A 1.435
7743 2019-04-15 07:10:00 A 1.704
7753 2019-04-15 08:00:00 B 0.372
7754 2019-04-15 08:05:00 B 0.382
We can make mark all indices which are two places before or after the NaN
, then replace their values with NaN
as well:
# Get indices of NaN's
idxnull = df[df['Measurement'].isnull()].index
a = [range(x+2) if x==0 else range(x-2, x) if x==idxnull.max() else range(x-2, x+2) for x in idxnull]
for rng in a:
df.loc[rng, 'Measurement'] = np.NaN
df.dropna(inplace=True)
df = df.iloc[1:]
Index Date Time Sample Measurement
3 7741 2019-04-15 07:00:00 A 1.301
4 7742 2019-04-15 07:05:00 A 1.435
5 7743 2019-04-15 07:10:00 A 1.704
14 7753 2019-04-15 08:00:00 B 0.372
15 7754 2019-04-15 08:05:00 B 0.382
The list comprehension looks quite difficult, but its the following:
for x in idxnull:
if x > 0:
range(x-2, x+2)
elif x==idxnull.max():
range(x-2)
else:
range(x+2)
First I mark the invalids as you would, other places are NaN, then bfill
, ffill
:
df['invalid'] = np.where(df.Measurement.gt(6), True, np.nan)
groups = df.groupby('Sample')
df['invalid'] = groups.invalid.ffill(limit=2)
df['invalid'] = groups.invalid.bfill(limit=2)
# drop the invalids:
df = df[df.invalid.isna()]
# drop the invalid column:
df.drop('invalid', axis=1, inplace=True)
Output:
Date Time Sample Measurement
Index
7741 2019-04-15 07:00:00 A 1.301
7742 2019-04-15 07:05:00 A 1.435
7743 2019-04-15 07:10:00 A 1.704
7753 2019-04-15 08:00:00 B 0.372
7754 2019-04-15 08:05:00 B 0.382
df.loc[((df['Measurement']>6) & (df['Sample'] == 'A')),'drop'] = 'Y'
# making sure B readings dont get dropped
l = df.index[df['drop'] == 'Y'].tolist()
l_drop = []
for i in l:
l_drop.append(i-1)
l_drop.append(i+1)
l_drop.append(i+2)
df.drop(df.index[l_drop],inplace=True)
No iterating over the dataframe.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With