I'm wondering how are default starting values specified in glm
.
This post suggests that default values are set as zeros. This one says that there is an algorithm behind it, however relevant link is broken.
I tried to fit simple logistic regression model with algorithm trace:
set.seed(123)
x <- rnorm(100)
p <- 1/(1 + exp(-x))
y <- rbinom(100, size = 1, prob = p)
# to see parameter estimates in each step
trace(glm.fit, quote(print(coefold)), at = list(c(22, 4, 8, 4, 19, 3)))
First, without specification of initial values:
glm(y ~ x, family = "binomial")
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
NULL
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.386379 1.106234
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3991135 1.1653971
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3995188 1.1669508
In the first step, initial values are NULL
.
Second, I set starting values to be zeros:
glm(y ~ x, family = "binomial", start = c(0, 0))
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0 0
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3177530 0.9097521
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3909975 1.1397163
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3994147 1.1666173
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3995191 1.1669518
And we can see that iterations between first and second approach differ.
To see initial values specified by glm
I tried to fit model with only one iteration:
glm(y ~ x, family = "binomial", control = list(maxit = 1))
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
NULL
Call: glm(formula = y ~ x, family = "binomial", control = list(maxit = 1))
Coefficients:
(Intercept) x
0.3864 1.1062
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 134.6
Residual Deviance: 115 AIC: 119
Estimates of parameters (not surprisingly) correspond to estimates of the first approach in the second iteration i.e., [1] 0.386379 1.106234
Setting these values as initial values leads to the same iterations sequence as in the first approach:
glm(y ~ x, family = "binomial", start = c(0.386379, 1.106234))
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.386379 1.106234
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3991135 1.1653971
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3995188 1.1669508
So the question is, how these values are calculated?
start=c(b0,b1)
initializes eta to b0+x*b1
(mu to 1/(1+exp(-eta)))
start=c(0,0)
initializes eta to 0 (mu to 0.5) regardless of y or x value.
start=NULL
initializes eta= 1.098612 (mu=0.75) if y=1, regardless of x value.
start=NULL
initializes eta=-1.098612 (mu=0.25) if y=0, regardless of x value.
Once eta (and consequently mu and var(mu)) has been calculated, w
and z
are calculated and sent to a QR solver, in the spirit of qr.solve(cbind(1,x) * w, z*w)
.
Building off Roland's comment: I made a glm.fit.truncated()
, where I took glm.fit
down to the C_Cdqrls
call, and then commented it out. glm.fit.truncated
outputs the z
and w
values (as well as the values of the quantities used to calculate z
and w
) which would then be passed to the C_Cdqrls
call:
## call Fortran code via C wrapper
fit <- .Call(C_Cdqrls, x[good, , drop = FALSE] * w, z * w,
min(1e-7, control$epsilon/1000), check=FALSE)
More can be read about C_Cdqrls
here. Luckily, the function qr.solve
in base R taps directly into the LINPACK versions being called upon in glm.fit()
.
So we run glm.fit.truncated
for the different starting value specifications, and then do a call to qr.solve
with the w and z values, and we see how the "starting values" (or the first displayed iteration values) are calculated. As Roland indicated, specifying start=NULL
or start=c(0,0)
in glm() affects the calculations for w and z, not for start
.
For the start=NULL: z
is a vector where the elements have the value 2.431946 or -2.431946 and w
is a vector where all elements are 0.4330127:
start.is.null <- glm.fit.truncated(x,y,family=binomial(), start=NULL)
start.is.null
w <- start.is.null$w
z <- start.is.null$z
## if start is NULL, the first displayed values are:
qr.solve(cbind(1,x) * w, z*w)
# > qr.solve(cbind(1,x) * w, z*w)
# x
# 0.386379 1.106234
For the start=c(0,0): z
is a vector where the elements have the value 2 or -2 and w
is a vector where all elements are 0.5:
## if start is c(0,0)
start.is.00 <- glm.fit.truncated(x,y,family=binomial(), start=0)
start.is.00
w <- start.is.00$w
z <- start.is.00$z
## if start is c(0,0), the first displayed values are:
qr.solve(cbind(1,x) * w, z*w)
# > qr.solve(cbind(1,x) * w, z*w)
# x
# 0.3177530 0.9097521
So that's all well and good, but how do we calculate the w
and z
? Near the bottom of glm.fit.truncated()
we see
z <- (eta - offset)[good] + (y - mu)[good]/mu.eta.val[good]
w <- sqrt((weights[good] * mu.eta.val[good]^2)/variance(mu)[good])
Look at the following comparisons between the outputted values of the quantities used to calculate z
and w
:
cbind(y, start.is.null$mu, start.is.00$mu)
cbind(y, start.is.null$eta, start.is.00$eta)
cbind(start.is.null$var_mu, start.is.00$var_mu)
cbind(start.is.null$mu.eta.val, start.is.00$mu.eta.val)
Note that start.is.00
will have vector mu
with only the values 0.5 because eta is set to 0 and mu(eta) = 1/(1+exp(-0))= 0.5. start.is.null
sets those with y=1 to be mu=0.75 (which corresponds to eta=1.098612) and those with y=0 to be mu=0.25 (which corresponds to eta=-1.098612), and thus the var_mu
= 0.75*0.25 = 0.1875.
However, it is interesting to note, that I changed the seed and reran everything and the mu=0.75 for y=1 and mu=0.25 for y=0 (and thus the other quantities stayed the same). That is to say, start=NULL gives rise to the same w
and z
regardless of what y
and x
are, because they initialize eta=1.098612 (mu=0.75) if y=1 and eta=-1.098612 (mu=0.25) if y=0.
So it appears that a starting value for the Intercept coefficient and for the X-coefficient is not set for start=NULL, but rather initial values are given to eta depending on the y-value and independent of the x-value. From there w
and z
are calculated, then sent along with x
to the qr.solver.
set.seed(123)
x <- rnorm(100)
p <- 1/(1 + exp(-x))
y <- rbinom(100, size = 1, prob = p)
glm.fit.truncated <- function(x, y, weights = rep.int(1, nobs),
start = 0,etastart = NULL, mustart = NULL,
offset = rep.int(0, nobs),
family = binomial(),
control = list(),
intercept = TRUE,
singular.ok = TRUE
){
control <- do.call("glm.control", control)
x <- as.matrix(x)
xnames <- dimnames(x)[[2L]]
ynames <- if(is.matrix(y)) rownames(y) else names(y)
conv <- FALSE
nobs <- NROW(y)
nvars <- ncol(x)
EMPTY <- nvars == 0
## define weights and offset if needed
if (is.null(weights))
weights <- rep.int(1, nobs)
if (is.null(offset))
offset <- rep.int(0, nobs)
## get family functions:
variance <- family$variance
linkinv <- family$linkinv
if (!is.function(variance) || !is.function(linkinv) )
stop("'family' argument seems not to be a valid family object", call. = FALSE)
dev.resids <- family$dev.resids
aic <- family$aic
mu.eta <- family$mu.eta
unless.null <- function(x, if.null) if(is.null(x)) if.null else x
valideta <- unless.null(family$valideta, function(eta) TRUE)
validmu <- unless.null(family$validmu, function(mu) TRUE)
if(is.null(mustart)) {
## calculates mustart and may change y and weights and set n (!)
eval(family$initialize)
} else {
mukeep <- mustart
eval(family$initialize)
mustart <- mukeep
}
if(EMPTY) {
eta <- rep.int(0, nobs) + offset
if (!valideta(eta))
stop("invalid linear predictor values in empty model", call. = FALSE)
mu <- linkinv(eta)
## calculate initial deviance and coefficient
if (!validmu(mu))
stop("invalid fitted means in empty model", call. = FALSE)
dev <- sum(dev.resids(y, mu, weights))
w <- sqrt((weights * mu.eta(eta)^2)/variance(mu))
residuals <- (y - mu)/mu.eta(eta)
good <- rep_len(TRUE, length(residuals))
boundary <- conv <- TRUE
coef <- numeric()
iter <- 0L
} else {
coefold <- NULL
eta <-
if(!is.null(etastart)) etastart
else if(!is.null(start))
if (length(start) != nvars)
stop(gettextf("length of 'start' should equal %d and correspond to initial coefs for %s", nvars, paste(deparse(xnames), collapse=", ")),
domain = NA)
else {
coefold <- start
offset + as.vector(if (NCOL(x) == 1L) x * start else x %*% start)
}
else family$linkfun(mustart)
mu <- linkinv(eta)
if (!(validmu(mu) && valideta(eta)))
stop("cannot find valid starting values: please specify some", call. = FALSE)
## calculate initial deviance and coefficient
devold <- sum(dev.resids(y, mu, weights))
boundary <- conv <- FALSE
##------------- THE Iteratively Reweighting L.S. iteration -----------
for (iter in 1L:control$maxit) {
good <- weights > 0
varmu <- variance(mu)[good]
if (anyNA(varmu))
stop("NAs in V(mu)")
if (any(varmu == 0))
stop("0s in V(mu)")
mu.eta.val <- mu.eta(eta)
if (any(is.na(mu.eta.val[good])))
stop("NAs in d(mu)/d(eta)")
## drop observations for which w will be zero
good <- (weights > 0) & (mu.eta.val != 0)
if (all(!good)) {
conv <- FALSE
warning(gettextf("no observations informative at iteration %d",
iter), domain = NA)
break
}
z <- (eta - offset)[good] + (y - mu)[good]/mu.eta.val[good]
w <- sqrt((weights[good] * mu.eta.val[good]^2)/variance(mu)[good])
# ## call Fortran code via C wrapper
# fit <- .Call(C_Cdqrls, x[good, , drop = FALSE] * w, z * w,
# min(1e-7, control$epsilon/1000), check=FALSE)
#
#print(iter)
#print(z)
#print(w)
}
}
return(list(z=z, w=w, mustart=mustart, etastart=etastart, eta=eta, offset=offset, mu=mu, mu.eta.val=mu.eta.val,
weight=weights, var_mu=variance(mu)))
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With