I've been writing a small Python script that executes some shell commands using the subprocess
module and a helper function:
import subprocess as sp
def run(command, description):
"""Runs a command in a formatted manner. Returns its return code."""
start=datetime.datetime.now()
sys.stderr.write('%-65s' % description)
s=sp.Popen(command, shell=True, stderr=sp.PIPE, stdout=sp.PIPE)
out,err=s.communicate()
end=datetime.datetime.now()
duration=end-start
status='Done' if s.returncode==0 else 'Failed'
print '%s (%d seconds)' % (status, duration.seconds)
The following lines reads the standard output and error:
s=sp.Popen(command, shell=True, stderr=sp.PIPE, stdout=sp.PIPE)
out,err=s.communicate()
As you can see, stdout and stderr are not used. Suppose that I want to write the output and error messages to a log file, in a formatted way, e.g.:
[STDOUT: 2011-01-17 14:53:55] <message>
[STDERR: 2011-01-17 14:53:56] <message>
My question is, what's the most Pythonic way to do it? I thought of three options:
write
method.write
.PIPE
itself in some way.UPDATE : reference test script
I'm checking the results with this script, saved as test.py
:
#!/usr/bin/python
import sys
sys.stdout.write('OUT\n')
sys.stdout.flush()
sys.stderr.write('ERR\n')
sys.stderr.flush()
Any ideas?
1 and 2 are reasonable solutions, but overriding write() won't be enough.
The problem is that Popen needs file handles to attach to the process, so Python file objects doesn't work, they have to be OS level. To solve that you have to have a Python object that has a os level file handle. The only way I can think of solving that is to use pipes, so you have an os level file handle to write to. But then you need another thread that sits and polls that pipe for things to read in so it can log it. (So this is more strictly an implementation of 2, as it delegates to logging).
Said and done:
import io
import logging
import os
import select
import subprocess
import time
import threading
LOG_FILENAME = 'output.log'
logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG)
class StreamLogger(io.IOBase):
def __init__(self, level):
self.level = level
self.pipe = os.pipe()
self.thread = threading.Thread(target=self._flusher)
self.thread.start()
def _flusher(self):
self._run = True
buf = b''
while self._run:
for fh in select.select([self.pipe[0]], [], [], 0)[0]:
buf += os.read(fh, 1024)
while b'\n' in buf:
data, buf = buf.split(b'\n', 1)
self.write(data.decode())
time.sleep(1)
self._run = None
def write(self, data):
return logging.log(self.level, data)
def fileno(self):
return self.pipe[1]
def close(self):
if self._run:
self._run = False
while self._run is not None:
time.sleep(1)
os.close(self.pipe[0])
os.close(self.pipe[1])
So that class starts a os level pipe that Popen can attach the stdin/out/error to for the subprocess. It also starts a thread that polls the other end of that pipe once a second for things to log, which it then logs with the logging module.
Possibly this class should implement more things for completeness, but it works in this case anyway.
Example code:
with StreamLogger(logging.INFO) as out:
with StreamLogger(logging.ERROR) as err:
subprocess.Popen("ls", stdout=out, stderr=err, shell=True)
output.log ends up like so:
INFO:root:output.log
INFO:root:streamlogger.py
INFO:root:and
INFO:root:so
INFO:root:on
Tested with Python 2.6, 2.7 and 3.1.
I would think any implementation of 1 and 3 would need to use similar techniques. It is a bit involved, but unless you can make the Popen command log correctly itself, I don't have a better idea).
I would suggest option 3, with the logging standard library package. In this case I'd say the other 2 were overkill.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With