Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Date axis in heatmap seaborn

A little info: I'm very new to programming and this is a small part of the my first script. The goal of this particular segment is to display a seaborn heatmap with vertical depth on y-axis, time on x-axis and intensity of a scientific measurement as the heat function.

I'd like to apologize if this has been answered elsewhere, but my searching abilities must have failed me.

sns.set()
nametag = 'Well_4_all_depths_capf'
Dp = D[D.well == 'well4']
print(Dp.date)


heat = Dp.pivot("depth",  "date", "capf")
### depth, date and capf are all columns of a pandas dataframe 

plt.title(nametag)

sns.heatmap(heat,  linewidths=.25)

plt.savefig('%s%s.png' % (pathheatcapf, nametag), dpi = 600)

this is the what prints from the ' print(Dp.date) ' so I'm pretty sure the formatting from the dataframe is in the format I want, particularly Year, day, month.

0    2016-08-09
1    2016-08-09
2    2016-08-09
3    2016-08-09
4    2016-08-09
5    2016-08-09
6    2016-08-09
         ...    

But, when I run it the date axis always prints with blank times (00:00 etc) that I don't want. Is there a way to remove these from the date axis?

Is the problem that in a cell above I used this function to scan the file name and make a column with the date??? Is it wrong to use datetime instead of just a date function?

D['date']=pd.to_datetime(['%s-%s-%s' %(f[0:4],f[4:6],f[6:8]) for f in             
D['filename']])

enter image description here

like image 431
frankshort Avatar asked Dec 02 '16 05:12

frankshort


3 Answers

Example with standard heatmap datetime labels

import pandas as pd
import seaborn as sns

dates = pd.date_range('2019-01-01', '2020-12-01')

df = pd.DataFrame(np.random.randint(0, 100, size=(len(dates), 4)), index=dates)

sns.heatmap(df)

standard_heatmap

We can create some helper classes/functions to get to some better looking labels and placement. AxTransformer enables conversion from data coordinates to tick locations, set_date_ticks allows custom date ranges to be applied to plots.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from collections.abc import Iterable
from sklearn import linear_model

class AxTransformer:
    def __init__(self, datetime_vals=False):
        self.datetime_vals = datetime_vals
        self.lr = linear_model.LinearRegression()
        
        return
    
    def process_tick_vals(self, tick_vals):
        if not isinstance(tick_vals, Iterable) or isinstance(tick_vals, str):
            tick_vals = [tick_vals]
            
        if self.datetime_vals == True:
            tick_vals = pd.to_datetime(tick_vals).astype(int).values
            
        tick_vals = np.array(tick_vals)
            
        return tick_vals
    
    def fit(self, ax, axis='x'):
        axis = getattr(ax, f'get_{axis}axis')()
        
        tick_locs = axis.get_ticklocs()
        tick_vals = self.process_tick_vals([label._text for label in axis.get_ticklabels()])
        
        self.lr.fit(tick_vals.reshape(-1, 1), tick_locs)
        
        return
    
    def transform(self, tick_vals):        
        tick_vals = self.process_tick_vals(tick_vals)
        tick_locs = self.lr.predict(np.array(tick_vals).reshape(-1, 1))
        
        return tick_locs
    
def set_date_ticks(ax, start_date, end_date, axis='y', date_format='%Y-%m-%d', **date_range_kwargs):
    dt_rng = pd.date_range(start_date, end_date, **date_range_kwargs)

    ax_transformer = AxTransformer(datetime_vals=True)
    ax_transformer.fit(ax, axis=axis)
    
    getattr(ax, f'set_{axis}ticks')(ax_transformer.transform(dt_rng))
    getattr(ax, f'set_{axis}ticklabels')(dt_rng.strftime(date_format))

    ax.tick_params(axis=axis, which='both', bottom=True, top=False, labelbottom=True)
    
    return ax

These provide us a lot of flexibility, e.g.

fig, ax = plt.subplots(dpi=150)

sns.heatmap(df, ax=ax)

set_date_ticks(ax, '2019-01-01', '2020-12-01', freq='3MS')

cleaned_heatmap_date_labels

or if you really want to get weird you can do stuff like

fig, ax = plt.subplots(dpi=150)

sns.heatmap(df, ax=ax)

set_date_ticks(ax, '2019-06-01', '2020-06-01', freq='2MS', date_format='%b `%y')

weird_heatmap_date_labels

For your specific example you'll have to pass axis='x' to set_date_ticks

like image 130
Ayrton Bourn Avatar answered Nov 15 '22 13:11

Ayrton Bourn


You have to use strftime function for your date series of dataframe to plot xtick labels correctly:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import random

dates = [datetime.today() - timedelta(days=x * random.getrandbits(1)) for x in xrange(25)]
df = pd.DataFrame({'depth': [0.1,0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001],\
 'date': dates,\
 'value': [-4.1808639999999997, -9.1753490000000006, -11.408113999999999, -10.50245, -8.0274750000000008, -0.72260200000000008, -6.9963940000000004, -10.536339999999999, -9.5440649999999998, -7.1964070000000007, -0.39225599999999999, -6.6216390000000001, -9.5518009999999993, -9.2924690000000005, -6.7605589999999998, -0.65214700000000003, -6.8852289999999989, -9.4557760000000002, -8.9364629999999998, -6.4736289999999999, -0.96481800000000006, -6.051482, -9.7846860000000007, -8.5710630000000005, -6.1461209999999999]})
pivot = df.pivot(index='depth', columns='date', values='value')

sns.set()
ax = sns.heatmap(pivot)
ax.set_xticklabels(df['date'].dt.strftime('%d-%m-%Y'))
plt.xticks(rotation=-90)

plt.show()

enter image description here

like image 10
Serenity Avatar answered Nov 15 '22 11:11

Serenity


  • First, the 'date' column must be converted to a datetime dtype with pandas.to_datetime
  • If the desired result is to only have the dates (without time), then the easiest solution is to use the .dt accessor to extract the .date component. Alternative, use dt.strftime to set a specific string format.
    • strftime() and strptime() Format Codes
    • df.date.dt.strftime('%H:%M') would extract hours and minutes into a string like '14:29'
    • In the example below, the extracted date is assigned to the same column, but the value can also be assigned as a new column.
  • pandas.DataFrame.pivot_table is used to aggregate a function if there are multiple values in a column for each index, pandas.DataFrame.pivot should be used if there is only a single value.
    • This is better than .groupby because the dataframe is correctly shaped to be easily plotted.
  • Tested in python 3.8.11, pandas 1.3.2, matplotlib 3.4.3, seaborn 0.11.2
import pandas as pd
import numpy as np
import seaborn as sns

# create sample data
dates = [f'2016-08-{d}T00:00:00.000000000' for d in range(9, 26, 2)] + ['2016-09-09T00:00:00.000000000']
depths = np.arange(1.25, 5.80, 0.25)
np.random.seed(365)
p1 = np.random.dirichlet(np.ones(10), size=1)[0]  # random probabilities for random.choice
p2 = np.random.dirichlet(np.ones(19), size=1)[0]  # random probabilities for random.choice
data = {'date': np.random.choice(dates, size=1000, p=p1), 'depth': np.random.choice(depths, size=1000, p=p2), 'capf': np.random.normal(0.3, 0.05, size=1000)}
df = pd.DataFrame(data)

# display(df.head())
                            date  depth      capf
0  2016-08-19T00:00:00.000000000   4.75  0.339233
1  2016-08-19T00:00:00.000000000   3.00  0.370395
2  2016-08-21T00:00:00.000000000   5.75  0.332895
3  2016-08-23T00:00:00.000000000   1.75  0.237543
4  2016-08-23T00:00:00.000000000   5.75  0.272067

# make sure the date column is converted to a datetime dtype
df.date = pd.to_datetime(df.date)

# extract only the date component of the date column
df.date = df.date.dt.date

# reshape the data for heatmap; if there's no need to aggregate a function, then use .pivot(...)
dfp = df.pivot_table(index='depth', columns='date', values='capf', aggfunc='mean')

# display(dfp.head())
date   2016-08-09  2016-08-11  2016-08-13  2016-08-15  2016-08-17  2016-08-19  2016-08-21  2016-08-23  2016-08-25  2016-09-09
depth                                                                                                                        
1.50     0.334661         NaN         NaN    0.302670    0.314186    0.325257    0.313645    0.263135         NaN         NaN
1.75     0.305488    0.303005    0.410124    0.299095    0.313899    0.280732    0.275758    0.260641         NaN    0.318099
2.00     0.322312    0.274105         NaN    0.319606    0.268984    0.368449    0.311517    0.309923         NaN    0.306162
2.25     0.289959    0.315081         NaN    0.302202    0.306286    0.339809    0.292546    0.314225    0.263875         NaN
2.50     0.314227    0.296968         NaN    0.312705    0.333797    0.299556    0.327187    0.326958         NaN         NaN

# plot
sns.heatmap(dfp, cmap='GnBu')

enter image description here

like image 1
Trenton McKinney Avatar answered Nov 15 '22 13:11

Trenton McKinney