What I want to do is using DataParallel in my custom RNN class.
It seems like I initialized hidden_0 in a wrong way...
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.encoder = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers,batch_first = True)
self.decoder = nn.Linear(hidden_size, output_size)
self.init_hidden(batch_size)
def forward(self, input):
input = self.encoder(input)
output, self.hidden = self.gru(input,self.hidden)
output = self.decoder(output.contiguous().view(-1,self.hidden_size))
output = output.contiguous().view(batch_size,num_steps,N_CHARACTERS)
#print (output.size())10,50,67
return output
def init_hidden(self,batch_size):
self.hidden = Variable(T.zeros(self.n_layers, batch_size, self.hidden_size).cuda())
And I call the network in this way:
decoder = T.nn.DataParallel(RNN(N_CHARACTERS, HIDDEN_SIZE, N_CHARACTERS), dim=1).cuda()
Then start training:
for epoch in range(EPOCH_):
hidden = decoder.init_hidden()
But I get the error and I have no ideal how to fix it…
'DataParallel' object has no attribute 'init_hidden'
Thanks for your help!
A workaround I did was:
self.model = model
# Since if the model is wrapped by the `DataParallel` class, you won't be able to access its attributes
# unless you write `model.module` which breaks the code compatibility. We use `model_attr_accessor` for attributes
# accessing only.
if isinstance(model, DataParallel):
self.model_attr_accessor = model.module
else:
self.model_attr_accessor = model
This gives me the advantage of having the model distributed across my GPUs when I do self.model(input)
(i.e., when it's wrapped by the DataParallel
); and when I need to access its attributes I just do self.model_attr_accessor.<<WHATEVER>>
. Also, this design gives me a more modular way of accessing the attributes from several functions without having if-statements
in all of them to check if it's wrapped by the DataParallel
or not.
On the other hand, if you had written model.module.<<WHATEVER>>
and the model wasn't wrapped by DataParallel
, this will raise an error saying that you model does not have module
attribute.
However, a more compact implementation is to create a customized DataParallel
like this:
class _CustomDataParallel(nn.Module):
def __init__(self, model):
super(_CustomDataParallel, self).__init__()
self.model = nn.DataParallel(model).cuda()
def forward(self, *input):
return self.model(*input)
def __getattr__(self, name):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.model.module, name)
When using DataParallel
your original module will be in attribute module
of the parallel module:
for epoch in range(EPOCH_):
hidden = decoder.module.init_hidden()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With