Suppose i have a DataFrame:
df = pd.DataFrame({'CATEGORY':['a','b','c','b','b','a','b'],
                   'VALUE':[pd.np.NaN,1,0,0,5,0,4]})
which looks like
    CATEGORY    VALUE
0      a         NaN
1      b         1
2      c         0
3      b         0
4      b         5
5      a         0
6      b         4
I group it:
df = df.groupby(by='CATEGORY')
And now, let me show, what i want with the help of example on one group 'b':
df.get_group('b')
group b:
    CATEGORY    VALUE
1      b          1
3      b          0
4      b          5
6      b          4
I need: In the scope of each group, count diff() between VALUE values, skipping all NaNs and 0s. So the result should be:
    CATEGORY    VALUE  DIFF
1      b          1      - 
3      b          0      -
4      b          5      4
6      b          4     -1
                You can use diff to subtract values after dropping 0 and NaN values:
df = pd.DataFrame({'CATEGORY':['a','b','c','b','b','a','b'],
               'VALUE':[pd.np.NaN,1,0,0,5,0,4]})
grouped = df.groupby("CATEGORY")
# define diff func
diff = lambda x: x["VALUE"].replace(0, np.NaN).dropna().diff()
df["DIFF"] = grouped.apply(diff).reset_index(0, drop=True)
print(df)
  CATEGORY  VALUE  DIFF
0        a    NaN   NaN
1        b    1.0   NaN
2        c    0.0   NaN
3        b    0.0   NaN
4        b    5.0   4.0
5        a    0.0   NaN
6        b    4.0  -1.0
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With