I have a process that is running multi threaded.
Process has a thread safe collection of items to process.
Each thread processes items from the collection in a loop.
Each item in the list is sent to a stored procedure by the thread to insert data into 3 tables in a transaction (in sql). If one insert fails, all three fails. Note that the scope of transaction is per item.
The inserts are pretty simple, just inserting one row (foreign key related) into each table, with identity seeds. There is no read, just insert and then move on to the next item.
If I have multiple threads trying to process their own items each trying to insert into the same set of tables, will this create deadlocks, timeouts, or any other problems due to transaction locks?
I know I have to use one db connection per thread, i'm mainly concerned with the lock levels of tables in each transaction. When one thread is inserting rows into the 3 tables, will the other threads have to wait? There is no dependency of rows per table, except the auto identiy needs to be incremented. If it is a table level lock to increment the identity, then I suppose other threads will have to wait. The inserts may or may not be fast sometimes. If it is going to have to wait, does it make sense to do multithreading?
The objective for multithreading is to speed up the processing of items.
Please share your experience.
PS: Identity seed is not a GUID.
All Db2 database system applications are multithreaded by default, and are capable of using multiple contexts. You can use the following Db2 APIs to use multiple contexts.
Any time you are going to read or write data, you need to lock it. This prevents data from attempting to read data that isn't done being written yet. Another way to word this is any data that is shared between threads or processes should be locked before altering or reading.
For the number of simultaneous requests sent to SQL Server instance, please note that in T-SQL you can't create multiple threads (which is a limitation of the language) even when SQL Server can handle multiple requests in parallel, but this is doable.
In SQL Server multiple inserts into a single table normally do not block each other on their own. The IDENTITY generation mechanism is highly concurrent so it does not serialize access. Inserts may block each other if they insert the same key in an unique index (one of them will also hit a duplicate key violation if both attempt to commit). You also have a probability game because keys are hashed, but it only comes into play in large transactions, see %%LOCKRES%% COLLISION PROBABILITY MAGIC MARKER: 16,777,215. If the transaction inserts into multiple tables also there shouldn't be conflicts as long as, again, the keys inserted are disjoint (this happens naturally if the inserts are master-child-child).
That being said, the presence of secondary indexes and specially the foreign keys constraints may introduce blocking and possible deadlocks. W/o an exact schema definition is impossible to tell wether you are or are not susceptible to deadlocks. Any other workload (reports, reads, maintenance) also adds to the contention problems and can potentially cause blocking and deadlocks.
Really really really high end deployments (the kind that don't need to ask for advice on forums...) can suffer from insert hot spot symptoms, see Resolving PAGELATCH Contention on Highly Concurrent INSERT Workloads
BTW, doing INSERTs from multiple threads is very seldom the correct answer to increasing the load throughput. See The Data Loading Performance Guide for good advice on how to solve that problem. And one last advice: multiple threads are also seldom the answer to making any program faster. Async programming is almost always the correct answer. See AsynchronousProcessing
and BeginExecuteNonQuery
.
As a side note:
just inserting one row (foreign key related) into each table, ... There is no read,
This statement is actually contradicting itself. Foreign keys implies reads, since they must be validated during writes.
What makes you think it has to be a table level lock if there is an identity. I don't see that in any of the documentation and I just tested an insert with (rowlock) on a table with an identity column and it works.
To minimize locking take a rowlock. For all the stored procedures update the tables in the same order.
You have inserts into three table taking up to 10 seconds each? I have some inserts in transactions that hit multiple tables (some of them big) and getting 100 / second.
Review your table design and keys. If you can pick a clustered PK that represents the order of your insert and if you can sort before inserting it will make a huge difference. Review the need for any other indexes. If you must have other indexes then monitor the fragmentation and defragment.
Related but not the same. I have a dataloader that must parse some data and then load millions of rows a night but not in a transaction. It optimized at 4 parallel process starting with empty tables but the problem was after two hours of loading throughput was down by a factor of 10 due to fragmentation. I redesigned the tables so the PK clustered index was on insert order. Dropped any other index that did not yield at least a 50% select bump. On the nightly insert first drop (disable) the indexes and use just two threads. One thread to parse and one to insert. Then I recreate the index at the end of the load. Got 100:1 improvement over 4 threads hammering the indexes. Yes you have a different problem but review your tables. Too often I think indexes are added for small select benefits without considering the hit to insert and update. Also select benefit is often over valued as you build the index and compare and that fresh index has no fragmentation.
Heavy-duty DBMSs like mssql are generally very, very good with handling concurrency. What exactly will happen with your concurrently executing transactions largely depends on your TI level (http://msdn.microsoft.com/en-us/library/ms175909%28v=sql.105%29.aspx), which you can set as you see fit, but in this scenario I dont think you need to worry about deadlocks.
Whether it makes sense or not - its always hard to guess that without knowing anything about your system. Its not hard to try it out though, so you can find that out yourself. If I was to guess, I would say it wont help you much if all your threads are gonna be doing is insert rows in a round-robin fashion.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With