Is there an (efficient) method to (a) calculate the shortest distance between a fixed point and a svg:path element in d3.js and (b) determine the point on the path which belongs to this distance?
In the general case, I don´t think so. An SVG path is a complex element. For instance, if the path is a Bezier curve, the control points may be off the represented line, and the represented shape may be off the bounding box of the control points.
I think that if you have a set of points that you use to generate the path, you may use this points to compute the distance from this points to a given point and get the minimum distance. In the MDN SVG Path Tutorial you can find some examples of complex shapes and how they are made.
Although my calculus answer is still valid, you could just do everything in this bl.ocks example:
var points = [[474,276],[586,393],[378,388],[338,323],[341,138],[547,252],[589,148],[346,227],[365,108],[562,62]];
var width = 960,
height = 500;
var line = d3.svg.line()
.interpolate("cardinal");
var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height);
var path = svg.append("path")
.datum(points)
.attr("d", line);
var line = svg.append("line");
var circle = svg.append("circle")
.attr("cx", -10)
.attr("cy", -10)
.attr("r", 3.5);
svg.append("rect")
.attr("width", width)
.attr("height", height)
.on("mousemove", mousemoved);
function mousemoved() {
var m = d3.mouse(this),
p = closestPoint(path.node(), m);
line.attr("x1", p[0]).attr("y1", p[1]).attr("x2", m[0]).attr("y2", m[1]);
circle.attr("cx", p[0]).attr("cy", p[1]);
}
function closestPoint(pathNode, point) {
var pathLength = pathNode.getTotalLength(),
precision = pathLength / pathNode.pathSegList.numberOfItems * .125,
best,
bestLength,
bestDistance = Infinity;
// linear scan for coarse approximation
for (var scan, scanLength = 0, scanDistance; scanLength <= pathLength; scanLength += precision) {
if ((scanDistance = distance2(scan = pathNode.getPointAtLength(scanLength))) < bestDistance) {
best = scan, bestLength = scanLength, bestDistance = scanDistance;
}
}
// binary search for precise estimate
precision *= .5;
while (precision > .5) {
var before,
after,
beforeLength,
afterLength,
beforeDistance,
afterDistance;
if ((beforeLength = bestLength - precision) >= 0 && (beforeDistance = distance2(before = pathNode.getPointAtLength(beforeLength))) < bestDistance) {
best = before, bestLength = beforeLength, bestDistance = beforeDistance;
} else if ((afterLength = bestLength + precision) <= pathLength && (afterDistance = distance2(after = pathNode.getPointAtLength(afterLength))) < bestDistance) {
best = after, bestLength = afterLength, bestDistance = afterDistance;
} else {
precision *= .5;
}
}
best = [best.x, best.y];
best.distance = Math.sqrt(bestDistance);
return best;
function distance2(p) {
var dx = p.x - point[0],
dy = p.y - point[1];
return dx * dx + dy * dy;
}
}
path {
fill: none;
stroke: #000;
stroke-width: 1.5px;
}
line {
fill: none;
stroke: red;
stroke-width: 1.5px;
}
circle {
fill: red;
}
rect {
fill: none;
cursor: crosshair;
pointer-events: all;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.4.11/d3.min.js"></script>
And I spent all that time in the previous answer writing up pretty LaTeX!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With