I have a dataframe df:
     A    B
0   28  abc
1   29  def
2   30  hij
3   31  hij
4   32  abc
5   28  abc
6   28  abc
7   29  def
8   30  hij
9   28  abc
10  29  klm
11  30  nop
12  28  abc
13  29  xyz
df.dtypes
A    object        # A is a string column as well
B    object
dtype: object
I want to use the values from this list to groupby:
i = np.array([ 3,  5,  6,  9, 12, 14])
Basically, all rows in df with index 0, 1, 2 are in the first group, rows with index 3, 4 are in the second group, rows with index 5 are in the third group, and so on.
My end goal is this:
A              B
28,29,30       abc,def,hij
31,32          hij,abc
28             abc
28,29,30       abc,def,hij
28,29,30       abc,klm,nop
28,29          abc,xyz
Solution so far using groupby + pd.cut: 
df.groupby(pd.cut(df.index, bins=np.append([0], i)), as_index=False).agg(','.join)
          A            B
0  29,30,31  def,hij,hij
1     32,28      abc,abc
2        28          abc
3  29,30,28  def,hij,abc
4  29,30,28  klm,nop,abc
5        29          xyz
The result is incorrect :-(
How can I do this properly?
You are very close, but use include_lowest=True and right=False in pd.cut because you want 0th index from the bins and then you don't want to include last element each of the bins i.e 
idx = pd.cut(df.index, bins=np.append([0], i), 
                      include_lowest=True, right=False)
df.groupby(idx, as_index=False).agg(','.join)
A B 28,29,30 abc,def,hij 31,32 hij,abc 28 abc 28,29,30 abc,def,hij 28,29,30 abc,klm,nop 28,29 abc,xyz
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With